These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35833753)

  • 1. CUSUMIN: A cumulative sum interval design for cancer phase I dose finding studies.
    Hatayama T; Yasui S
    Pharm Stat; 2022 Nov; 21(6):1324-1341. PubMed ID: 35833753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relative efficiency of model-assisted designs: a conditional approach.
    Lin R; Yuan Y
    J Biopharm Stat; 2019; 29(4):648-662. PubMed ID: 31258039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
    Zhou H; Yuan Y; Nie L
    Clin Cancer Res; 2018 Sep; 24(18):4357-4364. PubMed ID: 29661774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.
    Yuan Y; Hess KR; Hilsenbeck SG; Gilbert MR
    Clin Cancer Res; 2016 Sep; 22(17):4291-301. PubMed ID: 27407096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
    Kojima M
    BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies.
    Zhou Y; Lee JJ; Yuan Y
    Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes.
    Takeda K; Taguri M; Morita S
    Pharm Stat; 2018 Jul; 17(4):383-395. PubMed ID: 29700965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative review of novel model-assisted designs for phase I clinical trials.
    Zhou H; Murray TA; Pan H; Yuan Y
    Stat Med; 2018 Jun; 37(14):2208-2222. PubMed ID: 29682777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-stage dose expansion cohort (MSDEC) design with Bayesian stopping rule.
    Wang S; Tan M
    J Biopharm Stat; 2022 Jul; 32(4):600-612. PubMed ID: 35699319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keyboard: A Novel Bayesian Toxicity Probability Interval Design for Phase I Clinical Trials.
    Yan F; Mandrekar SJ; Yuan Y
    Clin Cancer Res; 2017 Aug; 23(15):3994-4003. PubMed ID: 28546227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Bayesian optimal interval design by accounting for overdose and underdose errors trade-offs.
    Sadachi R; Sato H; Fujiwara T; Hirakawa A
    J Biopharm Stat; 2023 Nov; ():1-20. PubMed ID: 37966109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extended Bayesian semi-mechanistic dose-finding design for phase I oncology trials using pharmacokinetic and pharmacodynamic information.
    Yang C; Li Y
    Stat Med; 2024 Feb; 43(4):689-705. PubMed ID: 38110304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
    Horton BJ; Wages NA; Conaway MR
    Stat Med; 2017 Jan; 36(2):291-300. PubMed ID: 27435150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early completion of phase I cancer clinical trials with Bayesian optimal interval design.
    Kojima M
    Stat Med; 2021 Jun; 40(14):3215-3226. PubMed ID: 33844323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN).
    Zhao Y; Yuan Y; Korn EL; Freidlin B
    Clin Cancer Res; 2024 Feb; 30(4):673-679. PubMed ID: 38048044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified toxicity probability interval method for dose-finding trials.
    Ji Y; Liu P; Li Y; Bekele BN
    Clin Trials; 2010 Dec; 7(6):653-63. PubMed ID: 20935021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.
    Kakizume T; Takeda K; Taguri M; Morita S
    Stat Methods Med Res; 2024 Apr; 33(4):716-727. PubMed ID: 38444354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.