BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35833796)

  • 1. Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.
    Martínez-Pizarro A; Leal F; Holm LL; Doktor TK; Petersen USS; Bueno M; Thöny B; Pérez B; Andresen BS; Desviat LR
    Nucleic Acid Ther; 2022 Oct; 32(5):378-390. PubMed ID: 35833796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudoexon exclusion by antisense therapy in 6-pyruvoyl-tetrahydropterin synthase deficiency.
    Brasil S; Viecelli HM; Meili D; Rassi A; Desviat LR; Pérez B; Ugarte M; Thöny B
    Hum Mutat; 2011 Sep; 32(9):1019-27. PubMed ID: 21542064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail.
    Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I
    Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation.
    Bruun GH; Doktor TK; Borch-Jensen J; Masuda A; Krainer AR; Ohno K; Andresen BS
    BMC Biol; 2016 Jul; 14():54. PubMed ID: 27380775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease.
    Albert S; Garanto A; Sangermano R; Khan M; Bax NM; Hoyng CB; Zernant J; Lee W; Allikmets R; Collin RWJ; Cremers FPM
    Am J Hum Genet; 2018 Apr; 102(4):517-527. PubMed ID: 29526278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria.
    Homolova K; Zavadakova P; Doktor TK; Schroeder LD; Kozich V; Andresen BS
    Hum Mutat; 2010 Apr; 31(4):437-44. PubMed ID: 20120036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer.
    Palhais B; Dembic M; Sabaratnam R; Nielsen KS; Doktor TK; Bruun GH; Andresen BS
    Mol Genet Metab; 2016 Nov; 119(3):258-269. PubMed ID: 27595546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense Oligonucleotide-Based Splice Correction of a Deep-Intronic Mutation in CHM Underlying Choroideremia.
    Garanto A; van der Velde-Visser SD; Cremers FPM; Collin RWJ
    Adv Exp Med Biol; 2018; 1074():83-89. PubMed ID: 29721931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs.
    Blázquez L; Aiastui A; Goicoechea M; Martins de Araujo M; Avril A; Beley C; García L; Valcárcel J; Fortes P; López de Munain A
    Hum Mutat; 2013 Oct; 34(10):1387-95. PubMed ID: 23864287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.
    Palhais B; Præstegaard VS; Sabaratnam R; Doktor TK; Lutz S; Burda P; Suormala T; Baumgartner M; Fowler B; Bruun GH; Andersen HS; Kožich V; Andresen BS
    Nucleic Acids Res; 2015 May; 43(9):4627-39. PubMed ID: 25878036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-intronic ATM mutation detected by genomic resequencing and corrected in vitro by antisense morpholino oligonucleotide (AMO).
    Cavalieri S; Pozzi E; Gatti RA; Brusco A
    Eur J Hum Genet; 2013 Jul; 21(7):774-8. PubMed ID: 23211698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing.
    Keegan NP; Wilton SD; Fletcher S
    Front Genet; 2021; 12():806946. PubMed ID: 35140743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotide induced pseudoexon skipping and restoration of functional protein for Fukuyama muscular dystrophy caused by a deep-intronic variant.
    Enkhjargal S; Sugahara K; Khaledian B; Nagasaka M; Inagaki H; Kurahashi H; Koshimizu H; Toda T; Taniguchi-Ikeda M
    Hum Mol Genet; 2023 Apr; 32(8):1301-1312. PubMed ID: 36426838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Characteristics of
    Weisschuh N; Mazzola P; Bertrand M; Haack TB; Wissinger B; Kohl S; Stingl K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating
    Spangsberg Petersen US; Dembic M; Martínez-Pizarro A; Richard E; Holm LL; Havelund JF; Doktor TK; Larsen MR; Færgeman NJ; Desviat LR; Andresen BS
    Mol Ther Nucleic Acids; 2024 Mar; 35(1):102101. PubMed ID: 38204914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense Oligonucleotide-Based Rescue of Aberrant Splicing Defects Caused by 15 Pathogenic Variants in
    Tomkiewicz TZ; Suárez-Herrera N; Cremers FPM; Collin RWJ; Garanto A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of three novel 6-pyruvoyl-tetrahydropterin synthase gene mutations (226C>T, IVS3+1G>A, 116-119delTGTT) in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency.
    Liu TT; Chang YH; Chiang SH; Yang YL; Yu WM; Hsiao KJ
    Hum Mutat; 2001; 18(1):83. PubMed ID: 11438997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.