BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35834059)

  • 21. Isolation and Characterization of
    Rubiyatno ; Mori K; Inoue D; Kim S; Yu J; Lee T; Ike M; Toyama T
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361931
    [No Abstract]   [Full Text] [Related]  

  • 22. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions.
    Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC
    Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LIPID ALTERATIONS IN EUGLENA GRACILIS CELLS DURING LIGHT-INDUCED GREENING.
    ROSENBERG A; PECKER M
    Biochemistry; 1964 Feb; 3():254-8. PubMed ID: 14163949
    [No Abstract]   [Full Text] [Related]  

  • 24. Chlorophyll photobleaching and ethane production in dichlorophenyldimethylurea- (DCMU) or paraquat-treated Euglena gracilis cells.
    Elstner EF; Osswald W
    Z Naturforsch C Biosci; 1980; 35(1-2):129-35. PubMed ID: 6773255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis.
    Kato S; Takaichi S; Ishikawa T; Asahina M; Takahashi S; Shinomura T
    BMC Plant Biol; 2016 Jan; 16():4. PubMed ID: 26733341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolomic response of Euglena gracilis and its bleached mutant strain to light.
    Shao Q; Hu L; Qin H; Liu Y; Tang X; Lei A; Wang J
    PLoS One; 2019; 14(11):e0224926. PubMed ID: 31697795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of DCMU on the formation of lipids and fatty acids, and on the ultrastructure of Euglena gracilis (author's transl)].
    Göbel E; Riessner R; Pohl P
    Z Naturforsch C Biosci; 1976; 31(11-12):687-92. PubMed ID: 138287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced changes of radioactivities in the 14C-labeled lipids and fatty acids of dark grown Euglena gracilis.
    Pohl P
    Z Naturforsch C; 1973; 28(5):264-9. PubMed ID: 4272178
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of phytochemical vanillic acid on the growth and lipid accumulation of freshwater microalga Euglena gracilis.
    Tan X; Zhu J; Wakisaka M
    World J Microbiol Biotechnol; 2021 Nov; 37(12):217. PubMed ID: 34773155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PRESSURE-INDUCED COLOR MUTATION OF EUGLENA GRACILIS.
    GROSS JA
    Science; 1965 Feb; 147(3659):741-2. PubMed ID: 14242019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis.
    Tanno Y; Kato S; Takahashi S; Tamaki S; Takaichi S; Kodama Y; Sonoike K; Shinomura T
    J Photochem Photobiol B; 2020 Aug; 209():111950. PubMed ID: 32682285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in
    Kanna SD; Domonkos I; Kóbori TO; Dergez Á; Böde K; Nagyapáti S; Zsiros O; Ünnep R; Nagy G; Garab G; Szilák L; Solymosi K; Kovács L; Ughy B
    Front Plant Sci; 2021; 12():725699. PubMed ID: 34868111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic activity during the division cycle in synchronized Euglena gracilis.
    Cook JR
    Plant Physiol; 1966 May; 41(5):821-5. PubMed ID: 5938185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation.
    Bakku RK; Yamamoto Y; Inaba Y; Hiranuma T; Gianino E; Amarianto L; Mahrous W; Suzuki H; Suzuki K
    Sci Rep; 2023 May; 13(1):7123. PubMed ID: 37130945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions.
    Yoshida Y; Tomiyama T; Maruta T; Tomita M; Ishikawa T; Arakawa K
    BMC Genomics; 2016 Mar; 17():182. PubMed ID: 26939900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy.
    Rocchetta I; Küpper H
    New Phytol; 2009; 182(2):405-420. PubMed ID: 19210715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive modifications of the photosynthetic apparatus in Euglena gracilis Klebs exposed to manganese excess.
    Ferroni L; Baldisserotto C; Fasulo MP; Pagnoni A; Pancaldi S
    Protoplasma; 2004 Dec; 224(3-4):167-77. PubMed ID: 15614477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of polychlorobiphenyls (Aroclor 1242) on bicarbonate-C14 uptake by Euglena gracilis.
    Bryan AM; Olafsson PG
    Bull Environ Contam Toxicol; 1978 Mar; 19(3):374-81. PubMed ID: 417750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production.
    Rodríguez-Zavala JS; Ortiz-Cruz MA; Mendoza-Hernández G; Moreno-Sánchez R
    J Appl Microbiol; 2010 Dec; 109(6):2160-72. PubMed ID: 20854454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.