These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35834317)

  • 1. Automatic mass detection in mammograms using deep convolutional neural networks.
    Agarwal R; Diaz O; Lladó X; Yap MH; Martí R
    J Med Imaging (Bellingham); 2019 Jul; 6(3):031409. PubMed ID: 35834317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for mass detection in Full Field Digital Mammograms.
    Agarwal R; Díaz O; Yap MH; Lladó X; Martí R
    Comput Biol Med; 2020 Jun; 121():103774. PubMed ID: 32339095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic breast mass detection in mammograms using density of wavelet coefficients and a patch-based CNN.
    NiroomandFam B; Nikravanshalmani A; Khalilian M
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1805-1815. PubMed ID: 34374941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network.
    Zhou Y; Wei J; Wu D; Zhang Y
    Front Oncol; 2022; 12():868257. PubMed ID: 35574397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning to Improve Breast Cancer Detection on Screening Mammography.
    Shen L; Margolies LR; Rothstein JH; Fluder E; McBride R; Sieh W
    Sci Rep; 2019 Aug; 9(1):12495. PubMed ID: 31467326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.
    Sawyer Lee R; Dunnmon JA; He A; Tang S; Ré C; Rubin DL
    J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms.
    Al-Antari MA; Han SM; Kim TS
    Comput Methods Programs Biomed; 2020 Nov; 196():105584. PubMed ID: 32554139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass detection in mammograms by bilateral analysis using convolution neural network.
    Li Y; Zhang L; Chen H; Cheng L
    Comput Methods Programs Biomed; 2020 Oct; 195():105518. PubMed ID: 32480189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm.
    Houssein EH; Emam MM; Ali AA
    Neural Comput Appl; 2022; 34(20):18015-18033. PubMed ID: 35698722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of multi-source data augmentation on performance of convolutional neural networks for abnormality classification in mammography.
    Hwang I; Trivedi H; Brown-Mulry B; Zhang L; Nalla V; Gastounioti A; Gichoya J; Seyyed-Kalantari L; Banerjee I; Woo M
    Front Radiol; 2023; 3():1181190. PubMed ID: 37588666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
    Aly GH; Marey M; El-Sayed SA; Tolba MF
    Comput Methods Programs Biomed; 2021 Mar; 200():105823. PubMed ID: 33190942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving breast mass classification by shared data with domain transformation using a generative adversarial network.
    Muramatsu C; Nishio M; Goto T; Oiwa M; Morita T; Yakami M; Kubo T; Togashi K; Fujita H
    Comput Biol Med; 2020 Apr; 119():103698. PubMed ID: 32339129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast Cancer Detection with an Ensemble of Deep Learning Networks Using a Consensus-Adaptive Weighting Method.
    Dehghan Rouzi M; Moshiri B; Khoshnevisan M; Akhaee MA; Jaryani F; Salehi Nasab S; Lee M
    J Imaging; 2023 Nov; 9(11):. PubMed ID: 37998094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning.
    Cha KH; Petrick N; Pezeshk A; Graff CG; Sharma D; Badal A; Sahiner B
    J Med Imaging (Bellingham); 2020 Jan; 7(1):012703. PubMed ID: 31763356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images.
    Montaha S; Azam S; Rafid AKMRH; Ghosh P; Hasan MZ; Jonkman M; De Boer F
    Biology (Basel); 2021 Dec; 10(12):. PubMed ID: 34943262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Algorithm for Breast Mass Classification in Digital Mammography Based on Feature Fusion.
    Zhang Q; Li Y; Zhao G; Man P; Lin Y; Wang M
    J Healthc Eng; 2020; 2020():8860011. PubMed ID: 33425311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.