These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3583437)

  • 1. Exponential model for a regulatory enzyme. Computer program for the determination of the model constants from initial velocity data.
    Ainsworth S; Kinderlerer J; Rhodes N
    Int J Biomed Comput; 1987 Mar; 20(3):163-73. PubMed ID: 3583437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponential model for a two-ligand, regulatory enzyme. Part 2: Performance tests of the 'INDEXP' computer program for the determination of model constants from initial velocity data. I. Artificial data.
    Ainsworth S; Gregory RB; Kinderlerer J
    Int J Biomed Comput; 1981 Jul; 12(4):315-34. PubMed ID: 7263100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exponential model for a two-ligand, regulatory enzyme. Part 1: computer programs for the determination of the model constants from initial velocity data.
    Kinderlerer J; Ainsworth S; Gregory RB
    Int J Biomed Comput; 1981 Jul; 12(4):291-313. PubMed ID: 7263099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mathematics behind modeling.
    Rosenblatt J
    Adv Exp Med Biol; 1998; 445():115-29. PubMed ID: 9781385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential model for a two-ligand, regulatory enzyme. Part 3: Performance tests of INDEXP computer programs for determination of model constants from initial velocity data. 2. Experimental data.
    Ainsworth S; Kinderlerer J; Gregory RB
    Int J Biomed Comput; 1981 Jul; 12(4):335-48. PubMed ID: 7021430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of critical points in the reaction velocity/concentration relationships predicted by the exponential model for a two substrate regulatory enzyme.
    Ainsworth S; Kinderlerer J
    Int J Biomed Comput; 1984; 15(4):249-58. PubMed ID: 6547926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of models for analysis of radioligand binding data.
    Abramson SN; McGonigle P; Molinoff PB
    Mol Pharmacol; 1987 Jan; 31(1):103-11. PubMed ID: 3027522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of Hill slopes predicted by the four ligand exponential model for a regulatory enzyme.
    Ainsworth S; Rhodes N
    Int J Biomed Comput; 1986 Nov; 19(3-4):279-88. PubMed ID: 3804481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A BASIC program for the numerical solution of the transient kinetics of complex biochemical models.
    Hecht JP; Nikonov JM; Alonso GL
    Comput Methods Programs Biomed; 1990 Sep; 33(1):13-20. PubMed ID: 2261750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis.
    Eisenstein E
    Arch Biochem Biophys; 1995 Jan; 316(1):311-8. PubMed ID: 7840631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exponential model for a regulatory enzyme: a computer program to determine the constants for the binding of a single ligand.
    Kinderlerer J; Ainsworth S
    Int J Biomed Comput; 1979 Jan; 10(1):29-36. PubMed ID: 478685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic analyses with RUGFIT: an interactive pharmacokinetic computer program.
    Scaf AH
    Biopharm Drug Dispos; 1988; 9(5):415-46. PubMed ID: 3224161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Ter-Ter enzyme kinetic mechanisms by computer simulation of isotope exchange at chemical equilibrium: development and application of ISOTER, a personal-computer-based program.
    Wedler FC; Barkley RW
    Anal Biochem; 1989 Mar; 177(2):268-81. PubMed ID: 2729545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcomputer simulation of steady-state enzyme kinetics for educational purposes.
    Daron HH; Aull JL
    Comput Appl Biosci; 1986 Sep; 2(3):207-9. PubMed ID: 3333730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of initial velocities of enzymic reactions from progress curves.
    Dagys R; Pauliukonis A; Kazlauskas D; Mankevicius M; Simutis R
    Biochem J; 1986 Aug; 237(3):821-5. PubMed ID: 3800920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives.
    Shou M; Mei Q; Ettore MW; Dai R; Baillie TA; Rushmore TH
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):845-53. PubMed ID: 10359672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP sulfurylase from filamentous fungi: which sulfonucleotide is the true allosteric effector?
    MacRae I; Segel IH
    Arch Biochem Biophys; 1997 Jan; 337(1):17-26. PubMed ID: 8990263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput screening of enzyme inhibitors: automatic determination of tight-binding inhibition constants.
    Kuzmic P; Sideris S; Cregar LM; Elrod KC; Rice KD; Janc JW
    Anal Biochem; 2000 May; 281(1):62-7. PubMed ID: 10847611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating enzyme kinetic parameters: a computer program for linear regression and non-parametric analysis.
    Brooks SP; Suelter CH
    Int J Biomed Comput; 1986 Sep; 19(2):89-99. PubMed ID: 3770985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate determination of rate constants of very slow, tight-binding competitive inhibitors by numerical solution of differential equations, independently of precise knowledge of the enzyme concentration.
    Plesner IW; Bülow A; Bols M
    Anal Biochem; 2001 Aug; 295(2):186-93. PubMed ID: 11488621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.