These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35834377)

  • 1. Feature similarity is non-linearly related to attentional selection: Evidence from visual search and sustained attention tasks.
    Chapman AF; Störmer VS
    J Vis; 2022 Jul; 22(8):4. PubMed ID: 35834377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. History Modulates Early Sensory Processing of Salient Distractors.
    Adam KCS; Serences JT
    J Neurosci; 2021 Sep; 41(38):8007-8022. PubMed ID: 34330776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of visual attention revealed in foraging tasks.
    Kristjánsson T; Thornton IM; Chetverikov A; Kristjánsson Á
    Cognition; 2020 Jan; 194():104032. PubMed ID: 31476612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccade target selection in macaque during feature and conjunction visual search.
    Bichot NP; Schall JD
    Vis Neurosci; 1999; 16(1):81-9. PubMed ID: 10022480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-based attention warps the perception of visual features.
    Chapman AF; Chunharas C; Störmer VS
    Sci Rep; 2023 Apr; 13(1):6487. PubMed ID: 37081047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual search asymmetry depends on target-distractor feature similarity: Is the asymmetry simply a result of distractor rejection speed?
    Zhang YR; Onyper S
    Atten Percept Psychophys; 2020 Jan; 82(1):80-97. PubMed ID: 31359376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The attentional template in high and low similarity search: Optimal tuning or tuning to relations?
    Hamblin-Frohman Z; Becker SI
    Cognition; 2021 Jul; 212():104732. PubMed ID: 33862440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of part-based similarity on visual search: the Frankenbear experiment.
    Alexander RG; Zelinsky GJ
    Vision Res; 2012 Feb; 54():20-30. PubMed ID: 22227607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distractor probability changes the shape of the attentional template.
    Geng JJ; DiQuattro NE; Helm J
    J Exp Psychol Hum Percept Perform; 2017 Dec; 43(12):1993-2007. PubMed ID: 28425732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What underlies visual selective attention development? Evidence that age-related improvements in visual feature integration influence visual selective attention performance.
    Lynn A; Festa EK; Heindel WC; Amso D
    J Exp Child Psychol; 2020 Mar; 191():104732. PubMed ID: 31770683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search.
    Barras C; Kerzel D
    Atten Percept Psychophys; 2017 Oct; 79(7):2037-2043. PubMed ID: 28681179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-adaptive changes to the target template in response to distractor context: Separability versus similarity.
    Yu X; Rahim RA; Geng JJ
    J Exp Psychol Gen; 2024 Feb; 153(2):564-572. PubMed ID: 37917441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dwelling on simple stimuli in visual search.
    Horstmann G; Becker SI; Grubert A
    Atten Percept Psychophys; 2020 Feb; 82(2):607-625. PubMed ID: 31721042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets.
    Töllner T; Conci M; Müller HJ
    Hum Brain Mapp; 2015 Mar; 36(3):935-44. PubMed ID: 25351495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional capture does not depend on feature similarity, but on target-nontarget relations.
    Becker SI; Folk CL; Remington RW
    Psychol Sci; 2013 May; 24(5):634-47. PubMed ID: 23558547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oculomotor capture by search-irrelevant features in visual working memory: on the crucial role of target-distractor similarity.
    Foerster RM; Schneider WX
    Atten Percept Psychophys; 2020 Jul; 82(5):2379-2392. PubMed ID: 32166644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of task set-modulating attentional capture depends on the distractor cost in visual search: evidence from N2pc.
    Zhao D; Liang S; Jin Z; Li L
    Neuroreport; 2014 Jul; 25(10):737-42. PubMed ID: 24840929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.