BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35834445)

  • 1. Comparative study of the unbinding process of some HTLV-1 protease inhibitors using unbiased molecular dynamics simulations.
    Tiyoula FN; Aryapour H; Moghadam MJ
    PLoS One; 2022; 17(7):e0263200. PubMed ID: 35834445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation.
    Sohraby F; Aryapour H
    PLoS One; 2021; 16(9):e0257916. PubMed ID: 34570822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of the binding pathway of an anti-HIV drug, Indinavir, in complex with the HTLV-1 protease using unaggregated unbiased molecular dynamics simulation.
    Sohraby F; Aryapour H
    Comput Biol Chem; 2022 Feb; 96():107616. PubMed ID: 34883394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease.
    Ma S; Vogt KA; Petrillo N; Ruhoff AJ
    Comput Biol Chem; 2015 Jun; 56():61-70. PubMed ID: 25889320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR.
    Selvaraj C; Singh P; Singh SK
    J Mol Recognit; 2014 Dec; 27(12):696-706. PubMed ID: 25319617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibiting HTLV-1 Protease: A Viable Antiviral Target.
    Lockbaum GJ; Henes M; Talledge N; Rusere LN; Kosovrasti K; Nalivaika EA; Somasundaran M; Ali A; Mansky LM; Kurt Yilmaz N; Schiffer CA
    ACS Chem Biol; 2021 Mar; 16(3):529-538. PubMed ID: 33619959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrates and inhibitors of human T-cell leukemia virus type I protease.
    Ding YS; Rich DH; Ikeda RA
    Biochemistry; 1998 Dec; 37(50):17514-8. PubMed ID: 9860866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Privileged Structures Meet Human T-Cell Leukemia Virus-1 (HTLV-1): C2-Symmetric 3,4-Disubstituted Pyrrolidines as Nonpeptidic HTLV-1 Protease Inhibitors.
    Kuhnert M; Blum A; Steuber H; Diederich WE
    J Med Chem; 2015 Jun; 58(11):4845-50. PubMed ID: 26000468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease.
    Satoh T; Li M; Nguyen JT; Kiso Y; Gustchina A; Wlodawer A
    J Mol Biol; 2010 Aug; 401(4):626-41. PubMed ID: 20600105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of prime-site sequence of retro-inverso-modified HTLV-1 protease inhibitor.
    Awahara C; Tatsumi T; Furuta S; Shinjoh G; Konno H; Nosaka K; Kobayashi K; Hattori Y; Akaji K
    Bioorg Med Chem; 2014 Apr; 22(8):2482-8. PubMed ID: 24680060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of inhibitors against HIV, HTLV-I, and Plasmodium falciparum aspartic proteases.
    Abdel-Rahman HM; Kimura T; Hidaka K; Kiso A; Nezami A; Freire E; Hayashi Y; Kiso Y
    Biol Chem; 2004 Nov; 385(11):1035-9. PubMed ID: 15576323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic characterization of newly discovered inhibitors of various constructs of human T-cell leukemia virus-1 (HTLV-1) protease and their effect on HTLV-1-infected cells.
    Demir A; Oguariri RM; Magis A; Ostrov DA; Imamichi T; Dunn BM
    Antivir Ther; 2012; 17(5):883-92. PubMed ID: 22436331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the unbinding pathways of new inhibitors of the SARS-CoV-2 papain-like protease using molecular dynamics simulation.
    Rahebi P; Aryapour H
    J Biomol Struct Dyn; 2023 Jul; ():1-14. PubMed ID: 37505097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of [Ile⁴⁰]HTLV-I protease inhibition assay using novel fluorogenic and chromogenic substrate.
    Kumada HO; Nguyen JT; Kakizawa T; Hidaka K; Kimura T; Hayashi Y; Kiso Y
    J Pept Sci; 2011 Aug; 17(8):569-75. PubMed ID: 21574213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell Leukemia virus type 1 protease.
    Kádas J; Weber IT; Bagossi P; Miklóssy G; Boross P; Oroszlan S; Tözsér J
    J Biol Chem; 2004 Jun; 279(26):27148-57. PubMed ID: 15102858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protease of human T-cell leukemia virus type-1 is a potential therapeutic target.
    Tözsér J; Weber IT
    Curr Pharm Des; 2007; 13(12):1285-94. PubMed ID: 17504236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations.
    Petrillo N; Dinh K; Vogt KA; Ma S
    J Chem Inf Model; 2023 Jun; 63(12):3865-3877. PubMed ID: 37289654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of peptidomimetic HTLV-I protease inhibitors containing hydroxymethylcarbonyl (HMC) isostere as the transition-state mimic.
    Maegawa H; Kimura T; Arii Y; Matsui Y; Kasai S; Hayashi Y; Kiso Y
    Bioorg Med Chem Lett; 2004 Dec; 14(23):5925-9. PubMed ID: 15501070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining potent HTLV-I protease inhibition without the P3-cap moiety in small tetrapeptidic inhibitors.
    Nguyen JT; Kato K; Kumada HO; Hidaka K; Kimura T; Kiso Y
    Bioorg Med Chem Lett; 2011 Mar; 21(6):1832-7. PubMed ID: 21316958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding HTLV-I protease.
    Shuker SB; Mariani VL; Herger BE; Dennison KJ
    Chem Biol; 2003 May; 10(5):373-80. PubMed ID: 12770819
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.