These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35834585)

  • 1. Simultaneous Adsorption of Gaseous Hg
    Wang C; Lv P; Ma Y; Mei J; Yang S
    Environ Sci Technol; 2022 Aug; 56(15):10977-10986. PubMed ID: 35834585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Synergistic Effect of Fe and Mo in FeMoS
    Wang C; Zhang X; Mei J; Hu Q; Yang S
    Environ Sci Technol; 2020 Jan; 54(1):586-594. PubMed ID: 31774263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Counteraction Effect of H
    Wang C; Xie F; Chang S; Ding Z; Mei J; Yang S
    Environ Sci Technol; 2022 Jan; 56(1):642-651. PubMed ID: 34902247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Design Strategies for Metal Sulfide Sorbents to Capture Low Concentrations of Gaseous Hg
    Wang C; Mei J; Hong Q; Xie F; Ding Z; Ma C; Yang S
    Environ Sci Technol; 2021 May; 55(10):7094-7101. PubMed ID: 33955737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outstanding Performance of Recyclable Amorphous MoS
    Mei J; Wang C; Kong L; Liu X; Hu Q; Zhao H; Yang S
    Environ Sci Technol; 2019 Apr; 53(8):4480-4489. PubMed ID: 30900878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant Enhancement of Gaseous Elemental Mercury Recovery from Coal-Fired Flue Gas by Phosphomolybdic Acid Grafting on Sulfurated γ-Fe
    Mei J; Sun P; Wang C; Zhang Q; Hu Q; Yang S
    Environ Sci Technol; 2020 Feb; 54(3):1992-2001. PubMed ID: 31894980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Zou S; Liao Y; Xiong S; Huang N; Geng Y; Yang S
    Environ Sci Technol; 2017 Mar; 51(6):3426-3434. PubMed ID: 28226212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic removal of elemental mercury via Ce-doped TiO
    Xin F; Ma S; Yang J; Zhao Y; Zhang J; Zheng C
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21281-21291. PubMed ID: 32270458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas.
    Liao Y; Chen D; Zou S; Xiong S; Xiao X; Dang H; Chen T; Yang S
    Environ Sci Technol; 2016 Oct; 50(19):10562-10569. PubMed ID: 27603113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hg
    Wang C; Ma Y; Lv P; Mei J; Yang S
    Environ Sci Technol; 2023 Jan; 57(1):697-707. PubMed ID: 36548301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous aqueous Hg(II) adsorption and gaseous Hg
    Hsu CJ; Xiao YZ; Hsi HC
    Chemosphere; 2021 Jan; 263():127966. PubMed ID: 33297025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate and behavior of mercury in coal-fired power plants.
    Meij R; Vredenbregt LH; te Winkel H
    J Air Waste Manag Assoc; 2002 Aug; 52(8):912-7. PubMed ID: 12184689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China.
    Liu S; Chen J; Cao Y; Yang H; Chen C; Jia W
    J Air Waste Manag Assoc; 2019 Feb; 69(2):234-245. PubMed ID: 30396327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Removal of gaseous elemental mercury over cerium doped low vanadium loading V2O5-WO3/TiO2 in simulated coal-fired flue gas].
    Wan Q; Duan L; He KB; Chen L; Li JH
    Huan Jing Ke Xue; 2011 Sep; 32(9):2800-4. PubMed ID: 22165254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of pyrite-phase transition metal sulfides for capturing leaked high concentrations of gaseous elemental mercury in indoor air: Mechanism and adsorption/desorption kinetics.
    Wang J; Yang Z; Mei J; Wang C; Hong Q; Yang S
    J Colloid Interface Sci; 2022 Sep; 622():431-442. PubMed ID: 35525146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.