These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35834740)

  • 1. Drug Discovery by Automated Adaptation of Chemical Structure and Identity.
    Patel LA; Chau P; Debesai S; Darwin L; Neale C
    J Chem Theory Comput; 2022 Aug; 18(8):5006-5024. PubMed ID: 35834740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Monte Carlo and Molecular Dynamics Simulations for Enhanced Binding Free Energy Estimation through Markov State Models.
    Gilabert JF; Gracia Carmona O; Hogner A; Guallar V
    J Chem Inf Model; 2020 Nov; 60(11):5529-5539. PubMed ID: 32644807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2016 May; 24(10):2159-89. PubMed ID: 27061672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation.
    Heinzelmann G; Gilson MK
    Sci Rep; 2021 Jan; 11(1):1116. PubMed ID: 33441879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-Ligand Binding Free Energies from a Consecutive Histograms Monte Carlo Sampling Method.
    Liu H; Deng J; Luo Z; Lin Y; Merz KM; Zheng Z
    J Chem Theory Comput; 2020 Oct; 16(10):6645-6655. PubMed ID: 32857938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein structure-based drug design: from docking to molecular dynamics.
    Śledź P; Caflisch A
    Curr Opin Struct Biol; 2018 Feb; 48():93-102. PubMed ID: 29149726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reorganization energy of compounds upon binding to proteins, from dynamic and solvated bound and unbound states.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2021 Dec; 51():116464. PubMed ID: 34798378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
    Raman EP; Yu W; Lakkaraju SK; MacKerell AD
    J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects on ligand binding to a serine protease.
    Gopal SM; Klumpers F; Herrmann C; Schäfer LV
    Phys Chem Chem Phys; 2017 May; 19(17):10753-10766. PubMed ID: 28116375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The slow but steady rise of binding free energy calculations in drug discovery.
    Xu H
    J Comput Aided Mol Des; 2023 Feb; 37(2):67-74. PubMed ID: 36469232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA
    Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAMPL6 host-guest challenge: binding free energies via a multistep approach.
    Eken Y; Patel P; Díaz T; Jones MR; Wilson AK
    J Comput Aided Mol Des; 2018 Oct; 32(10):1097-1115. PubMed ID: 30225724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.