These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 35834750)
1. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron. Park SJ; Schwartz BJ J Chem Theory Comput; 2022 Aug; 18(8):4973-4982. PubMed ID: 35834750 [TBL] [Abstract][Full Text] [Related]
3. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Marsalek O; Uhlig F; VandeVondele J; Jungwirth P Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274 [TBL] [Abstract][Full Text] [Related]
4. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study. Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823 [TBL] [Abstract][Full Text] [Related]
5. To be or not to be in a cavity: the hydrated electron dilemma. Casey JR; Kahros A; Schwartz BJ J Phys Chem B; 2013 Nov; 117(46):14173-82. PubMed ID: 24160853 [TBL] [Abstract][Full Text] [Related]
6. Partial Molar Solvation Volume of the Hydrated Electron Simulated Via DFT. Borrelli WR; Mei KJ; Park SJ; Schwartz BJ J Phys Chem B; 2024 Mar; 128(10):2425-2431. PubMed ID: 38422045 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. Casey JR; Larsen RE; Schwartz BJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233 [TBL] [Abstract][Full Text] [Related]
8. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. Zho CC; Farr EP; Glover WJ; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174 [TBL] [Abstract][Full Text] [Related]
9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
10. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. Kumar A; Walker JA; Bartels DM; Sevilla MD J Phys Chem A; 2015 Aug; 119(34):9148-59. PubMed ID: 26275103 [TBL] [Abstract][Full Text] [Related]
11. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. Farr EP; Zho CC; Challa JR; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177 [TBL] [Abstract][Full Text] [Related]
12. Hydrated Electrons in High-Concentration Electrolytes Interact with Multiple Cations: A Simulation Study. Narvaez WA; Park SJ; Schwartz BJ J Phys Chem B; 2022 May; 126(20):3748-3757. PubMed ID: 35544344 [TBL] [Abstract][Full Text] [Related]
13. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations. Zhao J; Wang M; Fu A; Yang H; Bu Y Chemphyschem; 2015 Aug; 16(11):2348-56. PubMed ID: 26017360 [TBL] [Abstract][Full Text] [Related]
14. Ab Initio Studies of Hydrated Electron/Cation Contact Pairs: Hydrated Electrons Simulated with Density Functional Theory Are Too Kosmotropic. Park SJ; Narvaez WA; Schwartz BJ J Phys Chem Lett; 2023 Jan; 14(2):559-566. PubMed ID: 36630724 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974 [TBL] [Abstract][Full Text] [Related]
17. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. Rana MK; Chandra A J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495 [TBL] [Abstract][Full Text] [Related]
18. How Water-Ion Interactions Control the Formation of Hydrated Electron:Sodium Cation Contact Pairs. Park SJ; Narvaez WA; Schwartz BJ J Phys Chem B; 2021 Dec; 125(47):13027-13040. PubMed ID: 34806385 [TBL] [Abstract][Full Text] [Related]
19. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. Glover WJ; Schwartz BJ J Chem Theory Comput; 2020 Feb; 16(2):1263-1270. PubMed ID: 31914315 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of the collapse of the delocalized excess electron in water. Savolainen J; Uhlig F; Ahmed S; Hamm P; Jungwirth P Nat Chem; 2014 Aug; 6(8):697-701. PubMed ID: 25054939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]