BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 35834966)

  • 1. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping.
    Munquad S; Das AB
    BioData Min; 2023 Nov; 16(1):32. PubMed ID: 37968655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subtype-WESLR: identifying cancer subtype with weighted ensemble sparse latent representation of multi-view data.
    Song W; Wang W; Dai DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34607358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.
    Yang H; Chen R; Li D; Wang Z
    Bioinformatics; 2021 Aug; 37(16):2231-2237. PubMed ID: 33599254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.
    Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H
    Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based ovarian cancer subtypes identification using multi-omics data.
    Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF
    BioData Min; 2020; 13():10. PubMed ID: 32863885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data.
    Zhang C; Chen Y; Zeng T; Zhang C; Chen L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics clustering for cancer subtyping based on latent subspace learning.
    Ye X; Shang Y; Shi T; Zhang W; Sakurai T
    Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes.
    Ji Y; Dutta P; Davuluri R
    Bioinform Adv; 2023; 3(1):vbad075. PubMed ID: 37424943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.
    Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L
    Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.