BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35835111)

  • 1. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools.
    Hu C; Ni D; Nam KH; Majumdar S; McLean J; Stahlberg H; Terns MP; Ke A
    Mol Cell; 2022 Aug; 82(15):2754-2768.e5. PubMed ID: 35835111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.
    Hu C; Myers MT; Zhou X; Hou Z; Lozen ML; Nam KH; Zhang Y; Ke A
    Mol Cell; 2024 Feb; 84(3):463-475.e5. PubMed ID: 38242128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tryptophan 'Gate' in the CRISPR-Cas3 Nuclease Controls ssDNA Entry into the Nuclease Site, That When Removed Results in Nuclease Hyperactivity.
    He L; Matošević ZJ; Mitić D; Markulin D; Killelea T; Matković M; Bertoša B; Ivančić-Baće I; Bolt EL
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure basis for RNA-guided DNA degradation by Cascade and Cas3.
    Xiao Y; Luo M; Dolan AE; Liao M; Ke A
    Science; 2018 Jul; 361(6397):. PubMed ID: 29880725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR-Cas system.
    Hu C; Ke A
    Methods Enzymol; 2022; 673():405-424. PubMed ID: 35965014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and genome editing of type I-B CRISPR-Cas.
    Lu M; Yu C; Zhang Y; Ju W; Ye Z; Hua C; Mao J; Hu C; Yang Z; Xiao Y
    Nat Commun; 2024 May; 15(1):4126. PubMed ID: 38750051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3.
    Hou Z; Hu C; Ke A; Zhang Y
    Curr Protoc; 2022 Feb; 2(2):e361. PubMed ID: 35129865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes.
    Majumdar S; Terns MP
    Extremophiles; 2019 Jan; 23(1):19-33. PubMed ID: 30284045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System.
    Xiao Y; Luo M; Hayes RP; Kim J; Ng S; Ding F; Liao M; Ke A
    Cell; 2017 Jun; 170(1):48-60.e11. PubMed ID: 28666122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
    Hochstrasser ML; Taylor DW; Bhat P; Guegler CK; Sternberg SH; Nogales E; Doudna JA
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6618-23. PubMed ID: 24748111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3.
    Yoshimi K; Takeshita K; Kodera N; Shibumura S; Yamauchi Y; Omatsu M; Umeda K; Kunihiro Y; Yamamoto M; Mashimo T
    Nat Commun; 2022 Aug; 13(1):4917. PubMed ID: 36042215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria.
    Govindarajan S; Borges A; Karambelkar S; Bondy-Denomy J
    J Bacteriol; 2022 May; 204(5):e0010522. PubMed ID: 35389256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing in mammalian cells using the CRISPR type I-D nuclease.
    Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y
    Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps.
    Loeff L; Brouns SJJ; Joo C
    Mol Cell; 2018 May; 70(3):385-394.e3. PubMed ID: 29706536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems.
    Tan R; Krueger RK; Gramelspacher MJ; Zhou X; Xiao Y; Ke A; Hou Z; Zhang Y
    Mol Cell; 2022 Feb; 82(4):852-867.e5. PubMed ID: 35051351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas.
    Dolan AE; Hou Z; Xiao Y; Gramelspacher MJ; Heo J; Howden SE; Freddolino PL; Ke A; Zhang Y
    Mol Cell; 2019 Jun; 74(5):936-950.e5. PubMed ID: 30975459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the miniature type V-F CRISPR-Cas effector enzyme.
    Takeda SN; Nakagawa R; Okazaki S; Hirano H; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Nishimasu H; Nureki O
    Mol Cell; 2021 Feb; 81(3):558-570.e3. PubMed ID: 33333018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
    Majumdar S; Ligon M; Skinner WC; Terns RM; Terns MP
    Extremophiles; 2017 Jan; 21(1):95-107. PubMed ID: 27582008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.
    Elmore J; Deighan T; Westpheling J; Terns RM; Terns MP
    Nucleic Acids Res; 2015 Dec; 43(21):10353-63. PubMed ID: 26519471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.