These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 35835111)
1. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Hu C; Ni D; Nam KH; Majumdar S; McLean J; Stahlberg H; Terns MP; Ke A Mol Cell; 2022 Aug; 82(15):2754-2768.e5. PubMed ID: 35835111 [TBL] [Abstract][Full Text] [Related]
2. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Hu C; Myers MT; Zhou X; Hou Z; Lozen ML; Nam KH; Zhang Y; Ke A Mol Cell; 2024 Feb; 84(3):463-475.e5. PubMed ID: 38242128 [TBL] [Abstract][Full Text] [Related]
3. Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Xiao Y; Luo M; Dolan AE; Liao M; Ke A Science; 2018 Jul; 361(6397):. PubMed ID: 29880725 [TBL] [Abstract][Full Text] [Related]
4. A Tryptophan 'Gate' in the CRISPR-Cas3 Nuclease Controls ssDNA Entry into the Nuclease Site, That When Removed Results in Nuclease Hyperactivity. He L; Matošević ZJ; Mitić D; Markulin D; Killelea T; Matković M; Bertoša B; Ivančić-Baće I; Bolt EL Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799639 [TBL] [Abstract][Full Text] [Related]
5. Structure and genome editing of type I-B CRISPR-Cas. Lu M; Yu C; Zhang Y; Ju W; Ye Z; Hua C; Mao J; Hu C; Yang Z; Xiao Y Nat Commun; 2024 May; 15(1):4126. PubMed ID: 38750051 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR-Cas system. Hu C; Ke A Methods Enzymol; 2022; 673():405-424. PubMed ID: 35965014 [TBL] [Abstract][Full Text] [Related]
7. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186 [TBL] [Abstract][Full Text] [Related]
8. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3. Hou Z; Hu C; Ke A; Zhang Y Curr Protoc; 2022 Feb; 2(2):e361. PubMed ID: 35129865 [TBL] [Abstract][Full Text] [Related]
9. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Majumdar S; Terns MP Extremophiles; 2019 Jan; 23(1):19-33. PubMed ID: 30284045 [TBL] [Abstract][Full Text] [Related]
10. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Xiao Y; Luo M; Hayes RP; Kim J; Ng S; Ding F; Liao M; Ke A Cell; 2017 Jun; 170(1):48-60.e11. PubMed ID: 28666122 [TBL] [Abstract][Full Text] [Related]
11. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Hochstrasser ML; Taylor DW; Bhat P; Guegler CK; Sternberg SH; Nogales E; Doudna JA Proc Natl Acad Sci U S A; 2014 May; 111(18):6618-23. PubMed ID: 24748111 [TBL] [Abstract][Full Text] [Related]
12. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3. Yoshimi K; Takeshita K; Kodera N; Shibumura S; Yamauchi Y; Omatsu M; Umeda K; Kunihiro Y; Yamamoto M; Mashimo T Nat Commun; 2022 Aug; 13(1):4917. PubMed ID: 36042215 [TBL] [Abstract][Full Text] [Related]
13. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria. Govindarajan S; Borges A; Karambelkar S; Bondy-Denomy J J Bacteriol; 2022 May; 204(5):e0010522. PubMed ID: 35389256 [TBL] [Abstract][Full Text] [Related]
14. Genome editing in mammalian cells using the CRISPR type I-D nuclease. Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237 [TBL] [Abstract][Full Text] [Related]
15. Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Pausch P; Müller-Esparza H; Gleditzsch D; Altegoer F; Randau L; Bange G Mol Cell; 2017 Aug; 67(4):622-632.e4. PubMed ID: 28781236 [TBL] [Abstract][Full Text] [Related]
16. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps. Loeff L; Brouns SJJ; Joo C Mol Cell; 2018 May; 70(3):385-394.e3. PubMed ID: 29706536 [TBL] [Abstract][Full Text] [Related]
17. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. Dolan AE; Hou Z; Xiao Y; Gramelspacher MJ; Heo J; Howden SE; Freddolino PL; Ke A; Zhang Y Mol Cell; 2019 Jun; 74(5):936-950.e5. PubMed ID: 30975459 [TBL] [Abstract][Full Text] [Related]
19. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Tan R; Krueger RK; Gramelspacher MJ; Zhou X; Xiao Y; Ke A; Hou Z; Zhang Y Mol Cell; 2022 Feb; 82(4):852-867.e5. PubMed ID: 35051351 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of Cas3 activation in type I-C CRISPR-Cas system. Kim DY; Lee SY; Ha HJ; Park HH Nucleic Acids Res; 2024 Sep; 52(17):10563-10574. PubMed ID: 39180405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]