BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35835111)

  • 21. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems.
    Xiao Y; Ke A
    Methods Enzymol; 2019; 616():27-41. PubMed ID: 30691647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises RNaseHI.
    Ivančić-Baće I; Radovčić M; Bočkor L; Howard JL; Bolt EL
    RNA Biol; 2013 May; 10(5):770-8. PubMed ID: 23406879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cas3-stimulated runaway replication of modified ColE1 plasmids in Escherichia coli is temperature dependent.
    Radovčić M; Čulo A; Ivančić-Baće I
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31095294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cas3/I-C mediated target DNA recognition and cleavage during CRISPR interference are independent of the composition and architecture of Cascade surveillance complex.
    Nimkar S; Anand B
    Nucleic Acids Res; 2020 Mar; 48(5):2486-2501. PubMed ID: 31980818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells.
    Morisaka H; Yoshimi K; Okuzaki Y; Gee P; Kunihiro Y; Sonpho E; Xu H; Sasakawa N; Naito Y; Nakada S; Yamamoto T; Sano S; Hotta A; Takeda J; Mashimo T
    Nat Commun; 2019 Dec; 10(1):5302. PubMed ID: 31811138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering.
    Shangguan Q; White MF
    Microbiology (Reading); 2023 Aug; 169(8):. PubMed ID: 37526970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.
    Redding S; Sternberg SH; Marshall M; Gibb B; Bhat P; Guegler CK; Wiedenheft B; Doudna JA; Greene EC
    Cell; 2015 Nov; 163(4):854-65. PubMed ID: 26522594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex.
    van Erp PBG; Patterson A; Kant R; Berry L; Golden SM; Forsman BL; Carter J; Jackson RN; Bothner B; Wiedenheft B
    ACS Chem Biol; 2018 Feb; 13(2):481-490. PubMed ID: 29035497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.
    Huo Y; Nam KH; Ding F; Lee H; Wu L; Xiao Y; Farchione MD; Zhou S; Rajashankar K; Kurinov I; Zhang R; Ke A
    Nat Struct Mol Biol; 2014 Sep; 21(9):771-7. PubMed ID: 25132177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.
    Künne T; Kieper SN; Bannenberg JW; Vogel AI; Miellet WR; Klein M; Depken M; Suarez-Diez M; Brouns SJ
    Mol Cell; 2016 Sep; 63(5):852-64. PubMed ID: 27546790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications.
    Hu C; Myers MT; Zhou X; Hou Z; Lozen ML; Zhang Y; Ke A
    bioRxiv; 2023 Aug; ():. PubMed ID: 37577534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex.
    Dillard KE; Brown MW; Johnson NV; Xiao Y; Dolan A; Hernandez E; Dahlhauser SD; Kim Y; Myler LR; Anslyn EV; Ke A; Finkelstein IJ
    Cell; 2018 Nov; 175(4):934-946.e15. PubMed ID: 30343903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harnessing type I CRISPR-Cas systems for genome engineering in human cells.
    Cameron P; Coons MM; Klompe SE; Lied AM; Smith SC; Vidal B; Donohoue PD; Rotstein T; Kohrs BW; Nyer DB; Kennedy R; Banh LM; Williams C; Toh MS; Irby MJ; Edwards LS; Lin CH; Owen ALG; Künne T; van der Oost J; Brouns SJJ; Slorach EM; Fuller CK; Gradia S; Kanner SB; May AP; Sternberg SH
    Nat Biotechnol; 2019 Dec; 37(12):1471-1477. PubMed ID: 31740839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3.
    Li J; Zhao D; Zhang T; Xiong H; Hu M; Liu H; Zhao F; Sun X; Fan P; Qian Y; Wang D; Lai L; Sui T; Li Z
    Sci Adv; 2024 Mar; 10(11):eadk8052. PubMed ID: 38489357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for assembly of non-canonical small subunits into type I-C Cascade.
    O'Brien RE; Santos IC; Wrapp D; Bravo JPK; Schwartz EA; Brodbelt JS; Taylor DW
    Nat Commun; 2020 Nov; 11(1):5931. PubMed ID: 33230133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primed CRISPR DNA uptake in Pyrococcus furiosus.
    Garrett S; Shiimori M; Watts EA; Clark L; Graveley BR; Terns MP
    Nucleic Acids Res; 2020 Jun; 48(11):6120-6135. PubMed ID: 32421777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering.
    Hao Y; Wang Q; Li J; Yang S; Zheng Y; Peng W
    Open Biol; 2022 Jan; 12(1):210241. PubMed ID: 35016549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system.
    Tuminauskaite D; Norkunaite D; Fiodorovaite M; Tumas S; Songailiene I; Tamulaitiene G; Sinkunas T
    BMC Biol; 2020 Jun; 18(1):65. PubMed ID: 32539804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.