These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35835118)

  • 1. A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation.
    Suzuki S; Nakamura A; Hatano Y; Yoshikawa M; Yoshii T; Sawada S; Atsuta-Tsunoda K; Aoki K; Tsukiji S
    Cell Chem Biol; 2022 Sep; 29(9):1446-1464.e10. PubMed ID: 35835118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT.
    Suzuki S; Hatano Y; Yoshii T; Tsukiji S
    Methods Mol Biol; 2021; 2312():237-251. PubMed ID: 34228294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designer Palmitoylation Motif-Based Self-Localizing Ligand for Sustained Control of Protein Localization in Living Cells and
    Nakamura A; Oki C; Sawada S; Yoshii T; Kuwata K; Rudd AK; Devaraj NK; Noma K; Tsukiji S
    ACS Chem Biol; 2020 Apr; 15(4):837-843. PubMed ID: 32182034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Intracellular Synthetic Lipidation-Induced Plasma Membrane Anchoring System for SNAP-Tag Fusion Proteins.
    Yoshii T; Tahara K; Suzuki S; Hatano Y; Kuwata K; Tsukiji S
    Biochemistry; 2020 Aug; 59(33):3044-3050. PubMed ID: 32786409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules.
    Nakamura A; Katahira R; Sawada S; Shinoda E; Kuwata K; Yoshii T; Tsukiji S
    Biochemistry; 2020 Jan; 59(2):205-211. PubMed ID: 31578861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Orthogonal, Plasma Membrane-Specific SLIPT Systems for Multiplexed Chemical Control of Signaling Pathways in Living Single Cells.
    Nakamura A; Oki C; Kato K; Fujinuma S; Maryu G; Kuwata K; Yoshii T; Matsuda M; Aoki K; Tsukiji S
    ACS Chem Biol; 2020 Apr; 15(4):1004-1015. PubMed ID: 32162909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of eDHFR-tagged proteins with trimethoprim PROTACs.
    Etersque JM; Lee IK; Sharma N; Xu K; Ruff A; Northrup JD; Sarkar S; Nguyen T; Lauman R; Burslem GM; Sellmyer MA
    Nat Commun; 2023 Nov; 14(1):7071. PubMed ID: 37923771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemo-optogenetic Protein Translocation System Using a Photoactivatable Self-Localizing Ligand.
    Yoshii T; Oki C; Watahiki R; Nakamura A; Tahara K; Kuwata K; Furuta T; Tsukiji S
    ACS Chem Biol; 2021 Aug; 16(8):1557-1565. PubMed ID: 34339163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third-Generation Covalent TMP-Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins.
    Mo J; Chen J; Shi Y; Sun J; Wu Y; Liu T; Zhang J; Zheng Y; Li Y; Chen Z
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202207905. PubMed ID: 35816052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Dimerization-Induced Protein Condensates on Telomeres.
    Zhao R; Chenoweth DM; Zhang H
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33900288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-generation covalent TMP-tag for live cell imaging.
    Chen Z; Jing C; Gallagher SS; Sheetz MP; Cornish VW
    J Am Chem Soc; 2012 Aug; 134(33):13692-9. PubMed ID: 22873118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vivo covalent TMP-tag based on proximity-induced reactivity.
    Gallagher SS; Sable JE; Sheetz MP; Cornish VW
    ACS Chem Biol; 2009 Jul; 4(7):547-56. PubMed ID: 19492849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging CAR T Cell Trafficking with eDHFR as a PET Reporter Gene.
    Sellmyer MA; Richman SA; Lohith K; Hou C; Weng CC; Mach RH; O'Connor RS; Milone MC; Farwell MD
    Mol Ther; 2020 Jan; 28(1):42-51. PubMed ID: 31668558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioorthogonal small-molecule-switch system for controlling protein function in live cells.
    Liu P; Calderon A; Konstantinidis G; Hou J; Voss S; Chen X; Li F; Banerjee S; Hoffmann JE; Theiss C; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10049-55. PubMed ID: 25065762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general chemical method to regulate protein stability in the mammalian central nervous system.
    Iwamoto M; Björklund T; Lundberg C; Kirik D; Wandless TJ
    Chem Biol; 2010 Sep; 17(9):981-8. PubMed ID: 20851347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell compatible trimethoprim-decorated iron oxide nanoparticles bind dihydrofolate reductase for magnetically modulating focal adhesion of mammalian cells.
    Long MJ; Pan Y; Lin HC; Hedstrom L; Xu B
    J Am Chem Soc; 2011 Jul; 133(26):10006-9. PubMed ID: 21657789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydrofolate reductase (mouse) and beta-galactosidase (Escherichia coli) can be translocated across the plasma membrane of E. coli.
    Freudl R; Schwarz H; Kramps S; Hindennach I; Henning U
    J Biol Chem; 1988 Nov; 263(32):17084-91. PubMed ID: 3141414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A photoactivatable self-localizing ligand with improved photosensitivity for chemo-optogenetic control of protein localization in living cells.
    Yoshii T; Oki C; Tsukiji S
    Bioorg Med Chem Lett; 2022 Sep; 72():128865. PubMed ID: 35738351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation can drive the unfolding of a preprotein domain.
    Arkowitz RA; Joly JC; Wickner W
    EMBO J; 1993 Jan; 12(1):243-53. PubMed ID: 8428582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretion of genetically-engineered dihydrofolate reductase from Escherichia coli using an E. coli alpha-hemolysin membrane translocation system.
    Nakano H; Kawakami Y; Nishimura H
    Appl Microbiol Biotechnol; 1992 Sep; 37(6):765-71. PubMed ID: 1368920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.