BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 3583519)

  • 1. Fatigue during stretch-shortening cycle exercises. II. Changes in neuromuscular activation patterns of human skeletal muscle.
    Gollhofer A; Komi PV; Fujitsuka N; Miyashita M
    Int J Sports Med; 1987 Mar; 8 Suppl 1():38-47. PubMed ID: 3583519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue during stretch-shortening cycle exercises: changes in mechanical performance of human skeletal muscle.
    Gollhofer A; Komi PV; Miyashita M; Aura O
    Int J Sports Med; 1987 Apr; 8(2):71-8. PubMed ID: 3596879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance.
    Horita T; Komi PV; Hämäläinen I; Avela J
    Eur J Appl Physiol; 2003 Feb; 88(6):527-34. PubMed ID: 12560951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise.
    Kuitunen S; Kyröläinen H; Avela J; Komi PV
    Scand J Med Sci Sports; 2007 Feb; 17(1):67-75. PubMed ID: 17305941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced stretch reflex sensitivity and muscle stiffness after long-lasting stretch-shortening cycle exercise in humans.
    Avela J; Komi PV
    Eur J Appl Physiol Occup Physiol; 1998 Oct; 78(5):403-10. PubMed ID: 9809840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise.
    Aura O; Komi PV
    Int J Sports Med; 1986 Jun; 7(3):137-43. PubMed ID: 3733310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise.
    Kuitunen S; Avela J; Kyröläinen H; Nicol C; Komi PV
    Eur J Appl Physiol; 2002 Nov; 88(1-2):107-16. PubMed ID: 12436277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of effort and EMG levels on short-latency stretch reflex modulation after varying background muscle contractions.
    Ogiso K; McBride JM; Finni T; Komi PV
    J Electromyogr Kinesiol; 2005 Aug; 15(4):333-40. PubMed ID: 15811603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exhaustive stretch-shortening cycle exercise: no contralateral effects on muscle activity in maximal motor performances.
    Regueme SC; Barthèlemy J; Nicol C
    Scand J Med Sci Sports; 2007 Oct; 17(5):547-55. PubMed ID: 17316375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activation and force production during bilateral and unilateral concentric and isometric contractions of the knee extensors in men and women at different ages.
    Häkkinen K; Kraemer WJ; Newton RU
    Electromyogr Clin Neurophysiol; 1997; 37(3):131-42. PubMed ID: 9187864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular fatigue in males and females during strenuous heavy resistance loading.
    Häkkinen K
    Electromyogr Clin Neurophysiol; 1994 Jun; 34(4):205-14. PubMed ID: 8082606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of elastic energy and myoelectrical potentiation of triceps surae during stretch-shortening cycle exercise.
    Bosco C; Tarkka I; Komi PV
    Int J Sports Med; 1982 Aug; 3(3):137-40. PubMed ID: 7129720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in motor unit activity and metabolism in human skeletal muscle during and after repeated eccentric and concentric contractions.
    Komi PV; Viitasalo JT
    Acta Physiol Scand; 1977 Jun; 100(2):246-54. PubMed ID: 888714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretch- and H-reflexes of the lower leg during whole body cooling and local warming.
    Oksa J; Rintamäki H; Rissanen S; Rytky S; Tolonen U; Komi PV
    Aviat Space Environ Med; 2000 Feb; 71(2):156-61. PubMed ID: 10685590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Firing rates of motor units during strong dynamic contractions.
    Del Valle A; Thomas CK
    Muscle Nerve; 2005 Sep; 32(3):316-25. PubMed ID: 15973658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimodal recovery pattern in human skeletal muscle induced by exhaustive stretch-shortening cycle exercise.
    Dousset E; Avela J; Ishikawa M; Kallio J; Kuitunen S; Kyröláinen H; Linnamo V; Komi PV
    Med Sci Sports Exerc; 2007 Mar; 39(3):453-60. PubMed ID: 17473771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises.
    Häkkinen K; Komi PV; Kauhanen H
    Int J Sports Med; 1986 Jun; 7(3):144-51. PubMed ID: 2942500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG and mechanical changes during sprint starts at different front block obliquities.
    Guissard N; Duchateau J; Hainaut K
    Med Sci Sports Exerc; 1992 Nov; 24(11):1257-63. PubMed ID: 1435177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities.
    Ishikawa M; Komi PV; Finni T; Kuitunen S
    J Electromyogr Kinesiol; 2006 Oct; 16(5):423-31. PubMed ID: 16275136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.