These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35835288)

  • 1. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model.
    Fontenele FF; Bouklas N
    Acta Biomater; 2023 Jun; 163():78-90. PubMed ID: 35835288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropocollagen springs allow collagen fibrils to stretch elastically.
    Bell JS; Hayes S; Whitford C; Sanchez-Weatherby J; Shebanova O; Terrill NJ; Sørensen TLM; Elsheikh A; Meek KM
    Acta Biomater; 2022 Apr; 142():185-193. PubMed ID: 35081430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Reactive Inelasticity Theoretical Framework for Modeling Viscoelasticity, Plastic Deformation, and Damage in Fibrous Soft Tissue.
    Safa BN; Santare MH; Elliott DM
    J Biomech Eng; 2019 Feb; 141(2):0210051-02100512. PubMed ID: 30267056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A viscoelastic model for human myocardium.
    Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA
    Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture toughness determination of porcine muscle tissue based on AQLV model derived viscous dissipated energy.
    Aryeetey OJ; Frank M; Lorenz A; Pahr DH
    J Mech Behav Biomed Mater; 2022 Nov; 135():105429. PubMed ID: 36113396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation-dependent indentation reveals the crosslink-mediated deformation mechanisms of collagen fibrils.
    Ostadi Moghaddam A; Arshee MR; Lin Z; Sivaguru M; Phillips H; McFarlin BL; Toussaint KC; Wagoner Johnson AJ
    Acta Biomater; 2023 Mar; 158():347-357. PubMed ID: 36638936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Recruitment Model of Tendon Viscoelasticity That Incorporates Fibril Creep and Explains Strain-Dependent Relaxation.
    Shearer T; Parnell WJ; Lynch B; Screen HRC; David Abrahams I
    J Biomech Eng; 2020 Jul; 142(7):. PubMed ID: 34043761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study.
    Suhail A; Banerjee A; Rajesh R
    Phys Rev E; 2024 Feb; 109(2-1):024411. PubMed ID: 38491641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous rate dependence of the preconditioned response of soft tissue during load controlled deformation.
    Giles JM; Black AE; Bischoff JE
    J Biomech; 2007; 40(4):777-85. PubMed ID: 16730737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-hyperelastic model of tendon hysteresis from adaptive recruitment of collagen type I fibrils.
    Ciarletta P; Dario P; Micera S
    Biomaterials; 2008 Feb; 29(6):764-70. PubMed ID: 17997481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic properties of acid- and alkaline-treated human dermis: a correlation between total surface charge and elastic modulus.
    Seehra GP; Silver FH
    Skin Res Technol; 2006 Aug; 12(3):190-8. PubMed ID: 16827694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible changes in the 3D collagen fibril architecture during cyclic loading of healthy and degraded cartilage.
    Inamdar SR; Prévost S; Terrill NJ; Knight MM; Gupta HS
    Acta Biomater; 2021 Dec; 136():314-326. PubMed ID: 34563724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.