These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35835418)
21. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. Chen L; Chen H; Hu Z; Tian Y; Wang C; Xie P; Deng X; Zhang Y; Tang X; Lin X; Li B; Wei C; Qiu G Water Res; 2022 Jun; 216():118258. PubMed ID: 35320769 [TBL] [Abstract][Full Text] [Related]
22. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374 [TBL] [Abstract][Full Text] [Related]
23. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Marques R; Santos J; Nguyen H; Carvalho G; Noronha JP; Nielsen PH; Reis MAM; Oehmen A Water Res; 2017 Oct; 122():159-171. PubMed ID: 28599161 [TBL] [Abstract][Full Text] [Related]
24. Population Structure and Morphotype Analysis of " Li C; Zeng W; Li N; Guo Y; Peng Y Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824450 [TBL] [Abstract][Full Text] [Related]
25. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Carvalheira M; Oehmen A; Carvalho G; Reis MAM Water Res; 2014 Nov; 64():149-159. PubMed ID: 25051162 [TBL] [Abstract][Full Text] [Related]
26. The impact of operational strategies on the performance of a photo-EBPR system. Carvalho VCF; Freitas EB; Silva PJ; Fradinho JC; Reis MAM; Oehmen A Water Res; 2018 Feb; 129():190-198. PubMed ID: 29149674 [TBL] [Abstract][Full Text] [Related]
27. Microbiome assembly mechanism and functional potential in enhanced biological phosphorus removal system enriched with Tetrasphaera-related polyphosphate accumulating organisms. Wang H; Lin L; Zhang L; Han P; Ju F Environ Res; 2023 Sep; 233():116494. PubMed ID: 37356531 [TBL] [Abstract][Full Text] [Related]
28. Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Skennerton CT; Barr JJ; Slater FR; Bond PL; Tyson GW Environ Microbiol; 2015 May; 17(5):1574-85. PubMed ID: 25088527 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extended-idle regime. Wang D; Zheng W; Li X; Yang Q; Liao D; Zeng G Biotechnol Bioeng; 2013 Mar; 110(3):827-37. PubMed ID: 23055367 [TBL] [Abstract][Full Text] [Related]
30. Effect of Lactate on the Microbial Community and Process Performance of an EBPR System. Rubio-Rincón FJ; Welles L; Lopez-Vazquez CM; Abbas B; van Loosdrecht MCM; Brdjanovic D Front Microbiol; 2019; 10():125. PubMed ID: 30833933 [No Abstract] [Full Text] [Related]
31. Butyrate can support PAOs but not GAOs in tropical climates. Wang L; Liu J; Oehmen A; Le C; Geng Y; Zhou Y Water Res; 2021 Apr; 193():116884. PubMed ID: 33556694 [TBL] [Abstract][Full Text] [Related]
32. Enrichment of phosphate-accumulating organisms (PAOs) in a microfluidic model biofilm system by mimicking a typical aerobic granular sludge feast/famine regime. Klein E; Weiler J; Wagner M; Čelikić M; Niemeyer CM; Horn H; Gescher J Appl Microbiol Biotechnol; 2022 Feb; 106(3):1313-1324. PubMed ID: 35032186 [TBL] [Abstract][Full Text] [Related]
33. Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading. Carvalheira M; Oehmen A; Carvalho G; Reis MAM Bioresour Technol; 2014 Nov; 172():290-296. PubMed ID: 25270044 [TBL] [Abstract][Full Text] [Related]
34. A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Wong PY; Cheng KY; Kaksonen AH; Sutton DC; Ginige MP Water Res; 2013 Nov; 47(17):6488-95. PubMed ID: 24041527 [TBL] [Abstract][Full Text] [Related]
35. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems. Majed N; Gu AZ Sci Total Environ; 2020 Nov; 743():140603. PubMed ID: 32758819 [TBL] [Abstract][Full Text] [Related]
36. Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community. Wong PY; Cheng KY; Krishna KCB; Kaksonen AH; Sutton DC; Ginige MP J Environ Manage; 2018 Jul; 218():569-578. PubMed ID: 29709825 [TBL] [Abstract][Full Text] [Related]
37. Modelling the metabolic shift of polyphosphate-accumulating organisms. Acevedo B; Borrás L; Oehmen A; Barat R Water Res; 2014 Nov; 65():235-44. PubMed ID: 25123437 [TBL] [Abstract][Full Text] [Related]
38. Metagenomic characterization of 'Candidatus Defluviicoccus tetraformis strain TFO71', a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal. Nobu MK; Tamaki H; Kubota K; Liu WT Environ Microbiol; 2014 Sep; 16(9):2739-51. PubMed ID: 24428681 [TBL] [Abstract][Full Text] [Related]
39. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Albertsen M; McIlroy SJ; Stokholm-Bjerregaard M; Karst SM; Nielsen PH Front Microbiol; 2016; 7():1033. PubMed ID: 27458436 [TBL] [Abstract][Full Text] [Related]
40. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: characteristics of carbon metabolism. Jeon CO; Lee DS; Park JM Water Environ Res; 2001; 73(3):295-300. PubMed ID: 11561588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]