These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35835761)

  • 1. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries.
    Shraer SD; Luchinin ND; Trussov IA; Aksyonov DA; Morozov AV; Ryazantsev SV; Iarchuk AR; Morozova PA; Nikitina VA; Stevenson KJ; Antipov EV; Abakumov AM; Fedotov SS
    Nat Commun; 2022 Jul; 13(1):4097. PubMed ID: 35835761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages of a Solid Solution over Biphasic Intercalation for Vanadium-Based Polyanion Cathodes in Na-Ion Batteries.
    Komayko AI; Shraer SD; Fedotov SS; Nikitina VA
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43767-43777. PubMed ID: 37681324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries.
    Shi Q; Qi R; Feng X; Wang J; Li Y; Yao Z; Wang X; Li Q; Lu X; Zhang J; Zhao Y
    Nat Commun; 2022 Jun; 13(1):3205. PubMed ID: 35680909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes.
    Zhang J; Yan Y; Wang X; Cui Y; Zhang Z; Wang S; Xie Z; Yan P; Chen W
    Nat Commun; 2023 Jun; 14(1):3701. PubMed ID: 37349302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries.
    Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G
    Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K
    Qiao F; Wang J; Yu R; Pi Y; Huang M; Cui L; Liu Z; An Q
    Small Methods; 2024 Jan; 8(1):e2300865. PubMed ID: 37800984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-coated MoS
    Liu Y; Hu X; Li J; Zhong G; Yuan J; Zhan H; Tang Y; Wen Z
    Nat Commun; 2022 Feb; 13(1):663. PubMed ID: 35115491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High Potential Polyanion Cathode Material for Rechargeable Mg-Ion Batteries.
    Li C; Lin L; Wu W; Sun X
    Small Methods; 2022 Aug; 6(8):e2200363. PubMed ID: 35689302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries.
    Ohara M; Hameed AS; Kubota K; Katogi A; Chihara K; Hosaka T; Komaba S
    Chem Sci; 2021 Sep; 12(37):12383-12390. PubMed ID: 34603668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Na
    Li Y; Liu Q; Wang Y; Cao K; Fan Y
    Inorg Chem; 2024 Aug; 63(33):15340-15347. PubMed ID: 39106318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO
    Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VPO
    Liao M; Cao Y; Li Z; Xu J; Qi Y; Xie Y; Peng Y; Wang Y; Wang F; Xia Y
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202206635. PubMed ID: 35610954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries.
    Pei Y; Chen Q; Wang M; Zhang P; Ren Q; Qin J; Xiao P; Song L; Chen Y; Yin W; Tong X; Zhen L; Wang P; Xu CY
    Nat Commun; 2022 Oct; 13(1):6158. PubMed ID: 36257951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries.
    Fu F; Liu X; Fu X; Chen H; Huang L; Fan J; Le J; Wang Q; Yang W; Ren Y; Amine K; Sun SG; Xu GL
    Nat Commun; 2022 May; 13(1):2826. PubMed ID: 35595772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Na Intercalation Mechanism into Nanosized V2O5/C Composite Cathode Material for Na-Ion Batteries.
    Ali G; Lee JH; Oh SH; Cho BW; Nam KW; Chung KY
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6032-9. PubMed ID: 26889957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries.
    Yang J; Tang M; Liu H; Chen X; Xu Z; Huang J; Su Q; Xia Y
    Small; 2019 Dec; 15(52):e1905311. PubMed ID: 31663266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries.
    He J; Bhargav A; Su L; Charalambous H; Manthiram A
    Nat Commun; 2023 Oct; 14(1):6568. PubMed ID: 37848498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TiS
    Tao H; Zhou M; Wang R; Wang K; Cheng S; Jiang K
    Adv Sci (Weinh); 2018 Nov; 5(11):1801021. PubMed ID: 30479930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.
    Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H
    ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.