BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35835774)

  • 21. A unified computational framework for single-cell data integration with optimal transport.
    Cao K; Gong Q; Hong Y; Wan L
    Nat Commun; 2022 Dec; 13(1):7419. PubMed ID: 36456571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.
    Sun S; Zhu J; Zhou X
    Nat Methods; 2020 Feb; 17(2):193-200. PubMed ID: 31988518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dictionary learning allows model-free pseudotime estimation of transcriptomic data.
    Rams M; Conrad TOF
    BMC Genomics; 2022 Jan; 23(1):56. PubMed ID: 35033004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ConSpaS: a contrastive learning framework for identifying spatial domains by integrating local and global similarities.
    Wu S; Qiu Y; Cheng X
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37965808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease.
    Zhang X; Wang X; Shivashankar GV; Uhler C
    Nat Commun; 2022 Dec; 13(1):7480. PubMed ID: 36463283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstruction of 3-dimensional tissue organization at the single-cell resolution.
    Fu Y; Das A; Wang D; Braun R; Yi R
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ADST: Forecasting Metro Flow Using Attention-Based Deep Spatial-Temporal Networks with Multi-Task Learning.
    Jia H; Luo H; Wang H; Zhao F; Ke Q; Wu M; Zhao Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings.
    Mahfouz A; van de Giessen M; van der Maaten L; Huisman S; Reinders M; Hawrylycz MJ; Lelieveldt BP
    Methods; 2015 Feb; 73():79-89. PubMed ID: 25449901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
    Mao Y; Fung KW
    J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate inference of genome-wide spatial expression with iSpatial.
    Zhang C; Chen R; Zhang Y
    Sci Adv; 2022 Aug; 8(34):eabq0990. PubMed ID: 36026447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NeST: nested hierarchical structure identification in spatial transcriptomic data.
    Walker BL; Nie Q
    Nat Commun; 2023 Oct; 14(1):6554. PubMed ID: 37848426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae.
    Wang M; Hu Q; Lv T; Wang Y; Lan Q; Xiang R; Tu Z; Wei Y; Han K; Shi C; Guo J; Liu C; Yang T; Du W; An Y; Cheng M; Xu J; Lu H; Li W; Zhang S; Chen A; Chen W; Li Y; Wang X; Xu X; Hu Y; Liu L
    Dev Cell; 2022 May; 57(10):1271-1283.e4. PubMed ID: 35512700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic networks from hierarchical bayesian graph clustering.
    Park Y; Moore C; Bader JS
    PLoS One; 2010 Jan; 5(1):e8118. PubMed ID: 20084108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc.
    Li R; Yang X
    Genome Biol; 2022 Jun; 23(1):124. PubMed ID: 35659722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilayer modelling of the human transcriptome and biological mechanisms of complex diseases and traits.
    Azevedo T; Dimitri GM; LiĆ³ P; Gamazon ER
    NPJ Syst Biol Appl; 2021 May; 7(1):24. PubMed ID: 34045472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical Spatiotemporal Graph Regularized Discriminative Correlation Filter for Visual Object Tracking.
    Javed S; Mahmood A; Dias J; Seneviratne L; Werghi N
    IEEE Trans Cybern; 2022 Nov; 52(11):12259-12274. PubMed ID: 34232902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development.
    Cang Z; Wang Y; Wang Q; Cho KWY; Holmes W; Nie Q
    PLoS Comput Biol; 2021 Mar; 17(3):e1008571. PubMed ID: 33684098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.