These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35835933)

  • 21. Optimization of volumetric breast density estimation in digital mammograms.
    Holland K; Gubern-Mérida A; Mann RM; Karssemeijer N
    Phys Med Biol; 2017 May; 62(9):3779-3797. PubMed ID: 28230532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TrEnD: A transformer-based encoder-decoder model with adaptive patch embedding for mass segmentation in mammograms.
    Liu D; Wu B; Li C; Sun Z; Zhang N
    Med Phys; 2023 May; 50(5):2884-2899. PubMed ID: 36609788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of using manual or automatic breast density information in a mass detection CAD system.
    Oliver A; Lladó X; Freixenet J; Martí R; Pérez E; Pont J; Zwiggelaar R
    Acad Radiol; 2010 Jul; 17(7):877-83. PubMed ID: 20540910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfer learning with different modified convolutional neural network models for classifying digital mammograms utilizing Local Dataset.
    Mutar MT; Majid M; Ibrahim MJ; Obaid AH; Alsammarraie AZ; Altameemi E; Kareem TF
    Gulf J Oncolog; 2023 Jan; 1(41):66-71. PubMed ID: 36804161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multichannel DenseNet Architecture for Classification of Mammographic Breast Density for Breast Cancer Detection.
    Pawar SD; Sharma KK; Sapate SG; Yadav GY; Alroobaea R; Alzahrani SM; Hedabou M
    Front Public Health; 2022; 10():885212. PubMed ID: 35548086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammographic density measured with quantitative computer-aided method: comparison with radiologists' estimates and BI-RADS categories.
    Martin KE; Helvie MA; Zhou C; Roubidoux MA; Bailey JE; Paramagul C; Blane CE; Klein KA; Sonnad SS; Chan HP
    Radiology; 2006 Sep; 240(3):656-65. PubMed ID: 16857974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.
    Taghanaki SA; Liu Y; Miles B; Hamarneh G
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A breast density index for digital mammograms based on radiologists' ranking.
    Boone JM; Lindfors KK; Beatty CS; Seibert JA
    J Digit Imaging; 1998 Aug; 11(3):101-15. PubMed ID: 9718500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and clinical validation of a software program for automated measurement of mammographic breast density.
    Araújo ALC; Soares HB; Carvalho DF; Mendonça RM; Oliveira AG
    BMC Med Inform Decis Mak; 2020 Mar; 20(1):45. PubMed ID: 32122371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic segmentation of the pectoral muscle based on boundary identification and shape prediction.
    Guo Y; Zhao W; Li S; Zhang Y; Lu Y
    Phys Med Biol; 2020 Feb; 65(4):045016. PubMed ID: 31869824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
    Al-Antari MA; Al-Masni MA; Kim TS
    Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net.
    Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY
    Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association and Prediction Utilizing Craniocaudal and Mediolateral Oblique View Digital Mammography and Long-Term Breast Cancer Risk.
    Chen S; Tamimi RM; Colditz GA; Jiang S
    Cancer Prev Res (Phila); 2023 Sep; 16(9):531-537. PubMed ID: 37428020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiautomatic estimation of breast density with DM-Scan software.
    Martínez Gómez I; Casals El Busto M; Antón Guirao J; Ruiz Perales F; Llobet Azpitarte R
    Radiologia; 2014; 56(5):429-34. PubMed ID: 23489767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of mammographic breast density using a deep convolutional neural network.
    Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A
    Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter.
    Vikhe PS; Thool VR
    J Med Syst; 2017 Oct; 41(12):190. PubMed ID: 29071592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation.
    Lehman CD; Yala A; Schuster T; Dontchos B; Bahl M; Swanson K; Barzilay R
    Radiology; 2019 Jan; 290(1):52-58. PubMed ID: 30325282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.