BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35835961)

  • 1. Starfish infers signatures of complex genomic rearrangements across human cancers.
    Bao L; Zhong X; Yang Y; Yang L
    Nat Cancer; 2022 Oct; 3(10):1247-1259. PubMed ID: 35835961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
    Cortés-Ciriano I; Lee JJ; Xi R; Jain D; Jung YL; Yang L; Gordenin D; Klimczak LJ; Zhang CZ; Pellman DS; ; Park PJ;
    Nat Genet; 2020 Mar; 52(3):331-341. PubMed ID: 32025003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms.
    Malhotra A; Lindberg M; Faust GG; Leibowitz ML; Clark RA; Layer RM; Quinlan AR; Hall IM
    Genome Res; 2013 May; 23(5):762-76. PubMed ID: 23410887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.
    Mazzagatti A; Engel JL; Ly P
    Mol Cell; 2024 Jan; 84(1):55-69. PubMed ID: 38029753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
    Ly P; Cleveland DW
    Trends Cell Biol; 2017 Dec; 27(12):917-930. PubMed ID: 28899600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants.
    Bahrambeigi V; Song X; Sperle K; Beck CR; Hijazi H; Grochowski CM; Gu S; Seeman P; Woodward KJ; Carvalho CMB; Hobson GM; Lupski JR
    Genome Med; 2019 Dec; 11(1):80. PubMed ID: 31818324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.
    Liu P; Erez A; Nagamani SC; Dhar SU; Kołodziejska KE; Dharmadhikari AV; Cooper ML; Wiszniewska J; Zhang F; Withers MA; Bacino CA; Campos-Acevedo LD; Delgado MR; Freedenberg D; Garnica A; Grebe TA; Hernández-Almaguer D; Immken L; Lalani SR; McLean SD; Northrup H; Scaglia F; Strathearn L; Trapane P; Kang SH; Patel A; Cheung SW; Hastings PJ; Stankiewicz P; Lupski JR; Bi W
    Cell; 2011 Sep; 146(6):889-903. PubMed ID: 21925314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of complex genomic rearrangements in cancers using CouGaR.
    Dzamba M; Ramani AK; Buczkowicz P; Jiang Y; Yu M; Hawkins C; Brudno M
    Genome Res; 2017 Jan; 27(1):107-117. PubMed ID: 27986820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genomic characteristics and cellular origin of chromothripsis.
    Storchová Z; Kloosterman WP
    Curr Opin Cell Biol; 2016 Jun; 40():106-113. PubMed ID: 27023493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells.
    Middelkamp S; van Heesch S; Braat AK; de Ligt J; van Iterson M; Simonis M; van Roosmalen MJ; Kelder MJ; Kruisselbrink E; Hochstenbach R; Verbeek NE; Ippel EF; Adolfs Y; Pasterkamp RJ; Kloosterman WP; Kuijk EW; Cuppen E
    Genome Med; 2017 Jan; 9(1):9. PubMed ID: 28126037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The landscape of chromothripsis across adult cancer types.
    Voronina N; Wong JKL; Hübschmann D; Hlevnjak M; Uhrig S; Heilig CE; Horak P; Kreutzfeldt S; Mock A; Stenzinger A; Hutter B; Fröhlich M; Brors B; Jahn A; Klink B; Gieldon L; Sieverling L; Feuerbach L; Chudasama P; Beck K; Kroiss M; Heining C; Möhrmann L; Fischer A; Schröck E; Glimm H; Zapatka M; Lichter P; Fröhling S; Ernst A
    Nat Commun; 2020 May; 11(1):2320. PubMed ID: 32385320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive methods for genomic signatures.
    Karamichalis R; Kari L; Konstantinidis S; Kopecki S; Solis-Reyes S
    BMC Bioinformatics; 2016 Aug; 17(1):313. PubMed ID: 27549194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromothripsis from DNA damage in micronuclei.
    Zhang CZ; Spektor A; Cornils H; Francis JM; Jackson EK; Liu S; Meyerson M; Pellman D
    Nature; 2015 Jun; 522(7555):179-84. PubMed ID: 26017310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Genomic Characteristics and Origin of Chromothripsis.
    Marcozzi A; Pellestor F; Kloosterman WP
    Methods Mol Biol; 2018; 1769():3-19. PubMed ID: 29564814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blocking Genomic Instability Prevents Acquired Resistance to MAPK Inhibitor Therapy in Melanoma.
    Dharanipragada P; Zhang X; Liu S; Lomeli SH; Hong A; Wang Y; Yang Z; Lo KZ; Vega-Crespo A; Ribas A; Moschos SJ; Moriceau G; Lo RS
    Cancer Discov; 2023 Apr; 13(4):880-909. PubMed ID: 36700848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis.
    Terradas M; Martín M; Genescà A
    Arch Toxicol; 2016 Nov; 90(11):2657-2667. PubMed ID: 27542123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signatures of copy number alterations in human cancer.
    Steele CD; Abbasi A; Islam SMA; Bowes AL; Khandekar A; Haase K; Hames-Fathi S; Ajayi D; Verfaillie A; Dhami P; McLatchie A; Lechner M; Light N; Shlien A; Malkin D; Feber A; Proszek P; Lesluyes T; Mertens F; Flanagan AM; Tarabichi M; Van Loo P; Alexandrov LB; Pillay N
    Nature; 2022 Jun; 606(7916):984-991. PubMed ID: 35705804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements.
    Krupina K; Goginashvili A; Cleveland DW
    Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta Human Papillomavirus 8 E6 Induces Micronucleus Formation and Promotes Chromothripsis.
    Dacus D; Stancic S; Pollina SR; Rifrogiate E; Palinski R; Wallace NA
    J Virol; 2022 Oct; 96(19):e0101522. PubMed ID: 36129261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.