BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35835977)

  • 1. A non-invasive multipoint product temperature measurement for pharmaceutical lyophilization.
    Jiang X; Kazarin P; Sinanis MD; Darwish A; Raghunathan N; Alexeenko A; Peroulis D
    Sci Rep; 2022 Jul; 12(1):12010. PubMed ID: 35835977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.
    Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G
    J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum Induced Surface Freezing as an effective method for improved inter- and intra-vial product homogeneity.
    Arsiccio A; Barresi A; De Beer T; Oddone I; Van Bockstal PJ; Pisano R
    Eur J Pharm Biopharm; 2018 Jul; 128():210-219. PubMed ID: 29626510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Measurement by Sublimation Rate as a Process Analytical Technology Tool in Lyophilization.
    Kawasaki H; Shimanouchi T; Sawada H; Hosomi H; Hamabe Y; Kimura Y
    J Pharm Sci; 2019 Jul; 108(7):2305-2314. PubMed ID: 30825460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless sensor networks for pharmaceutical lyophilization: Quantification of local gas pressure and temperature in primary drying.
    Strongrich A; Alexeenko A
    Eur J Pharm Biopharm; 2021 Dec; 169():52-63. PubMed ID: 34547415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of loading process on product collapse during large-scale lyophilization.
    Wallen AJ; Van Ocker SH; Sinacola JR; Phillips BR
    J Pharm Sci; 2009 Mar; 98(3):997-1004. PubMed ID: 18661543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.
    Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV
    AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process.
    Lietta E; Colucci D; Distefano G; Fissore D
    J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a PAT-based in-line control system for a continuous spin freeze-drying process.
    Leys L; Nuytten G; Van Bockstal PJ; De Beer T
    Int J Pharm; 2023 Jun; 641():123062. PubMed ID: 37209792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy.
    Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.
    Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S
    Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze drying--principles and practice for successful scale-up to manufacturing.
    Tsinontides SC; Rajniak P; Pham D; Hunke WA; Placek J; Reynolds SD
    Int J Pharm; 2004 Aug; 280(1-2):1-16. PubMed ID: 15265542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recommended Best Practices for Process Monitoring Instrumentation in Pharmaceutical Freeze Drying-2017.
    Nail S; Tchessalov S; Shalaev E; Ganguly A; Renzi E; Dimarco F; Wegiel L; Ferris S; Kessler W; Pikal M; Sacha G; Alexeenko A; Thompson TN; Reiter C; Searles J; Coiteux P
    AAPS PharmSciTech; 2017 Oct; 18(7):2379-2393. PubMed ID: 28205144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a new wireless Temperature Remote Interrogation System (TEMPRIS) to measure product temperature during freeze drying.
    Schneid S; Gieseler H
    AAPS PharmSciTech; 2008; 9(3):729-39. PubMed ID: 18561030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.