These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35836081)

  • 41. Quantitative Analysis of Bioluminescence Optical Signal.
    Niwa K; Kubota H; Enomoto T; Ichino Y; Ohmiya Y
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic.
    LaLumiere RT
    Brain Stimul; 2011 Jan; 4(1):1-6. PubMed ID: 21255749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reverse optogenetics of G protein signaling by zebrafish non-visual opsin Opn7b for synchronization of neuronal networks.
    Karapinar R; Schwitalla JC; Eickelbeck D; Pakusch J; Mücher B; Grömmke M; Surdin T; Knöpfel T; Mark MD; Siveke I; Herlitze S
    Nat Commun; 2021 Jul; 12(1):4488. PubMed ID: 34301944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin.
    Furuya T; Takehara I; Shimura A; Kishimoto H; Yasujima T; Ohta K; Shirasaka Y; Yuasa H; Inoue K
    Biochem Biophys Res Commun; 2018 Jan; 495(3):2152-2157. PubMed ID: 29273507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optogenetics in Understanding Mechanisms of Acute Kidney Injury.
    Tanaka S; Okusa MD
    Nephron; 2018; 140(2):152-155. PubMed ID: 29990991
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Making Sense of Optogenetics.
    Guru A; Post RJ; Ho YY; Warden MR
    Int J Neuropsychopharmacol; 2015 Jul; 18(11):pyv079. PubMed ID: 26209858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective control of synaptically-connected circuit elements by all-optical synapses.
    Prakash M; Murphy J; St Laurent R; Friedman N; Crespo EL; Bjorefeldt A; Pal A; Bhagat Y; Kauer JA; Shaner NC; Lipscombe D; Moore CI; Hochgeschwender U
    Commun Biol; 2022 Jan; 5(1):33. PubMed ID: 35017641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent developments in optical neuromodulation technologies.
    Kos A; Loohuis NF; Glennon JC; Celikel T; Martens GJ; Tiesinga PH; Aschrafi A
    Mol Neurobiol; 2013 Feb; 47(1):172-85. PubMed ID: 23065387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optogenetics and pharmacogenetics: principles and applications.
    Jiang J; Cui H; Rahmouni K
    Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R633-R645. PubMed ID: 28794102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Optogenetics brings hidden neural mechanisms into the light and could become a future therapy].
    Axelsen TM; Navntoft CA; Christiansen SH; Dreyer JK; Sørensen JB; Gether U; Woldbye DP
    Ugeskr Laeger; 2015 Aug; 177(34):. PubMed ID: 26320592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of discontinuous blue light stimulation on the electrophysiological properties of neurons lacking opsin expression in vitro: Implications for optogenetic experiments.
    Lightning A; Bourzeix M; Beurrier C; Kuczewski N
    Eur J Neurosci; 2023 Mar; 57(6):885-899. PubMed ID: 36726326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The microbial opsin family of optogenetic tools.
    Zhang F; Vierock J; Yizhar O; Fenno LE; Tsunoda S; Kianianmomeni A; Prigge M; Berndt A; Cushman J; Polle J; Magnuson J; Hegemann P; Deisseroth K
    Cell; 2011 Dec; 147(7):1446-57. PubMed ID: 22196724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine.
    Kaskova ZM; Tsarkova AS; Yampolsky IV
    Chem Soc Rev; 2016 Oct; 45(21):6048-6077. PubMed ID: 27711774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tagging neurons with light.
    Kim CK
    Science; 2023 Aug; 381(6657):495. PubMed ID: 37535725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
    Ronzitti E; Conti R; Zampini V; Tanese D; Foust AJ; Klapoetke N; Boyden ES; Papagiakoumou E; Emiliani V
    J Neurosci; 2017 Nov; 37(44):10679-10689. PubMed ID: 28972125
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emerging tools for bioluminescence imaging.
    Zambito G; Chawda C; Mezzanotte L
    Curr Opin Chem Biol; 2021 Aug; 63():86-94. PubMed ID: 33770744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fiberless Optogenetics.
    Chowdhury S; Yamanaka A
    Adv Exp Med Biol; 2021; 1293():407-416. PubMed ID: 33398829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishing a fiber-optic-based optical neural interface.
    Adamantidis AR; Zhang F; de Lecea L; Deisseroth K
    Cold Spring Harb Protoc; 2014 Aug; 2014(8):839-44. PubMed ID: 25086020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosynthesis-Inspired Deracemizative Production of D-Luciferin In Vitro by Combining Luciferase and Thioesterase.
    Niwa K; Kato DI
    Methods Mol Biol; 2022; 2524():53-58. PubMed ID: 35821462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.