These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35836411)
21. Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory. Sun JT; Duan XZ; Hoffmann AA; Liu Y; Garvin MR; Chen L; Hu G; Zhou JC; Huang HJ; Xue XF; Hong XY Mol Ecol; 2019 Jul; 28(14):3306-3323. PubMed ID: 31183910 [TBL] [Abstract][Full Text] [Related]
22. The effect of host community functional traits on plant disease risk varies along an elevational gradient. Halliday FW; Jalo M; Laine AL Elife; 2021 May; 10():. PubMed ID: 33983120 [TBL] [Abstract][Full Text] [Related]
23. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production. Ayllón D; Railsback SF; Harvey BC; García Quirós I; Nicola GG; Elvira B; Almodóvar A Sci Total Environ; 2019 Nov; 693():133648. PubMed ID: 31634990 [TBL] [Abstract][Full Text] [Related]
25. Landscape genomics: natural selection drives the evolution of mitogenome in penguins. Ramos B; González-Acuña D; Loyola DE; Johnson WE; Parker PG; Massaro M; Dantas GPM; Miranda MD; Vianna JA BMC Genomics; 2018 Jan; 19(1):53. PubMed ID: 29338715 [TBL] [Abstract][Full Text] [Related]
26. Whole-genome resequencing of Japanese whiting ( Han ZQ; Guo XY; Liu Q; Liu SS; Zhang ZX; Xiao SJ; Gao TX Zool Res; 2021 Sep; 42(5):548-561. PubMed ID: 34327887 [TBL] [Abstract][Full Text] [Related]
27. Single Amino Acid Substitution the DNA Repairing Gene Wang YP; Yang LN; Feng YY; Liu S; Zhan J Front Microbiol; 2022; 13():927139. PubMed ID: 35910660 [TBL] [Abstract][Full Text] [Related]
28. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Sasaki MC; Dam HG Glob Chang Biol; 2019 Dec; 25(12):4147-4164. PubMed ID: 31449341 [TBL] [Abstract][Full Text] [Related]
29. Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Hirayama M; Mukai T; Miya M; Murata Y; Sekiya Y; Yamashita T; Nishida M; Watabe S; Oda S; Mitani H Gene; 2010 Jun; 457(1-2):13-24. PubMed ID: 20193748 [TBL] [Abstract][Full Text] [Related]
30. Integrating within-species variation in thermal physiology into climate change ecology. Bennett S; Duarte CM; Marbà N; Wernberg T Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180550. PubMed ID: 31203756 [TBL] [Abstract][Full Text] [Related]
31. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Lepais O; Bacles CF Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401 [TBL] [Abstract][Full Text] [Related]
32. AFLPs and mitochondrial haplotypes reveal local adaptation to extreme thermal environments in a freshwater gastropod. Quintela M; Johansson MP; Kristjánsson BK; Barreiro R; Laurila A PLoS One; 2014; 9(7):e101821. PubMed ID: 25007329 [TBL] [Abstract][Full Text] [Related]
33. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015 [TBL] [Abstract][Full Text] [Related]
34. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Robin C; Andanson A; Saint-Jean G; Fabreguettes O; Dutech C Mol Ecol; 2017 Apr; 26(7):1952-1963. PubMed ID: 28141894 [TBL] [Abstract][Full Text] [Related]
35. Modeling Mito-nuclear Compatibility and Its Role in Species Identification. Princepe D; De Aguiar MAM Syst Biol; 2021 Jan; 70(1):133-144. PubMed ID: 32497198 [TBL] [Abstract][Full Text] [Related]
36. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. Fumagalli M; Sironi M; Pozzoli U; Ferrer-Admetlla A; Pattini L; Nielsen R PLoS Genet; 2011 Nov; 7(11):e1002355. PubMed ID: 22072984 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Chen Z; Farrell AP; Matala A; Narum SR Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103 [TBL] [Abstract][Full Text] [Related]
38. Thermal variability alters the impact of climate warming on consumer-resource systems. Fey SB; Vasseur DA Ecology; 2016 Jul; 97(7):1690-1699. PubMed ID: 27859173 [TBL] [Abstract][Full Text] [Related]
39. Coping with temperature at the warm edge--patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. Krenek S; Petzoldt T; Berendonk TU PLoS One; 2012; 7(3):e30598. PubMed ID: 22427799 [TBL] [Abstract][Full Text] [Related]
40. Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach. Thomas Y; Bacher C Glob Chang Biol; 2018 Oct; 24(10):4581-4597. PubMed ID: 30030873 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]