These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 35836569)

  • 1. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects.
    Baloglu MC; Celik Altunoglu Y; Baloglu P; Yildiz AB; Türkölmez N; Özden Çiftçi Y
    Front Genet; 2022; 13():859437. PubMed ID: 35836569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recalcitrance to transformation, a hindrance for genome editing of legumes.
    Nivya VM; Shah JM
    Front Genome Ed; 2023; 5():1247815. PubMed ID: 37810593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era.
    Jha UC; Nayyar H; Parida SK; Bakır M; von Wettberg EJB; Siddique KHM
    Front Genet; 2022; 13():831656. PubMed ID: 35464848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes.
    Singh G; Gudi S; Amandeep ; Upadhyay P; Shekhawat PK; Nayak G; Goyal L; Kumar D; Kumar P; Kamboj A; Thada A; Shekhar S; Koli GK; Dp M; Halladakeri P; Kaur R; Kumar S; Saini P; Singh I; Ayoubi H
    Front Plant Sci; 2022; 13():1035878. PubMed ID: 36438090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology Based Approaches for Breeding of Next-Generation Food Legumes.
    Shunmugam ASK; Kannan U; Jiang Y; Daba KA; Gorim LY
    Plants (Basel); 2018 Sep; 7(3):. PubMed ID: 30205575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects.
    Sharma KK; Palakolanu SR; Bhattacharya J; Shankhapal AR; Bhatnagar-Mathur P
    Front Genet; 2022; 13():999207. PubMed ID: 36276961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns.
    Zafar K; Sedeek KEM; Rao GS; Khan MZ; Amin I; Kamel R; Mukhtar Z; Zafar M; Mansoor S; Mahfouz MM
    Front Genome Ed; 2020; 2():5. PubMed ID: 34713214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progresses, Challenges, and Prospects of Genome Editing in Soybean (
    Xu H; Zhang L; Zhang K; Ran Y
    Front Plant Sci; 2020; 11():571138. PubMed ID: 33193504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies.
    Nadeem M; Li J; Yahya M; Wang M; Ali A; Cheng A; Wang X; Ma C
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits.
    Khan FS; Goher F; Zhang D; Shi P; Li Z; Htwe YM; Wang Y
    Front Plant Sci; 2022; 13():1042828. PubMed ID: 36578341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa.
    Hrbáčková M; Dvořák P; Takáč T; Tichá M; Luptovčiak I; Šamajová O; Ovečka M; Šamaj J
    Front Plant Sci; 2020; 11():592. PubMed ID: 32508859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence and opportunities for developing non-transgenic genome edited crops using site-directed nuclease 1 approach.
    Mamrutha HM; Zeenat W; Kapil D; Budhagatapalli N; Tikaniya D; Rakesh K; Krishnappa G; Singh G; Singh GP
    Crit Rev Biotechnol; 2023 Nov; ():1-11. PubMed ID: 37915126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of the regulatory environment for gene editing on delivering beneficial products.
    Jenkins D; Dobert R; Atanassova A; Pavely C
    In Vitro Cell Dev Biol Plant; 2021; 57(4):609-626. PubMed ID: 34429575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight Into the Prospects for the Improvement of Seed Starch in Legume-A Review.
    Tayade R; Kulkarni KP; Jo H; Song JT; Lee JD
    Front Plant Sci; 2019; 10():1213. PubMed ID: 31736985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Legume Breeding for the Agroecological Transition of Global Agri-Food Systems: A European Perspective.
    Rubiales D; Annicchiarico P; Vaz Patto MC; Julier B
    Front Plant Sci; 2021; 12():782574. PubMed ID: 34868184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Domestication on Secondary Metabolite Composition in Legumes.
    Ku YS; Contador CA; Ng MS; Yu J; Chung G; Lam HM
    Front Genet; 2020; 11():581357. PubMed ID: 33193705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining legume germplasm for genetic gains: An Indian perspective.
    Gayacharan ; Parida SK; Mondal N; Yadav R; Vishwakarma H; Rana JC
    Front Genet; 2023; 14():996828. PubMed ID: 36816034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating machine learning and genome editing for crop improvement.
    Chen L; Liu G; Zhang T
    aBIOTECH; 2024 Jun; 5(2):262-277. PubMed ID: 38974863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Yield and Nutritional Quality of Forage Crops.
    Capstaff NM; Miller AJ
    Front Plant Sci; 2018; 9():535. PubMed ID: 29740468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.