These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35837341)

  • 41. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells.
    Wang L; Hu J; Sorek CE; Chen EY; Ma PX; Yang B
    Expert Opin Biol Ther; 2016; 16(3):317-30. PubMed ID: 26560995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts.
    Asakura T; Tanaka T; Tanaka R
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5561-5577. PubMed ID: 33405687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vascular tissue engineering: from in vitro to in situ.
    Li S; Sengupta D; Chien S
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(1):61-76. PubMed ID: 24151038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioengineered blood vessels.
    Niu G; Sapoznik E; Soker S
    Expert Opin Biol Ther; 2014 Apr; 14(4):403-10. PubMed ID: 24460430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts.
    Leal BBJ; Wakabayashi N; Oyama K; Kamiya H; Braghirolli DI; Pranke P
    Front Cardiovasc Med; 2020; 7():592361. PubMed ID: 33585576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute.
    Weber C; Reinhardt S; Eghbalzadeh K; Wacker M; Guschlbauer M; Maul A; Sterner-Kock A; Wahlers T; Wippermann J; Scherner M
    J Vasc Surg; 2018 Dec; 68(6S):177S-187S.e1. PubMed ID: 29248244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication.
    Papaioannou TG; Manolesou D; Dimakakos E; Tsoucalas G; Vavuranakis M; Tousoulis D
    Acta Cardiol Sin; 2019 May; 35(3):284-289. PubMed ID: 31249458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue-engineered blood vessels: alternative to autologous grafts?
    Hoenig MR; Campbell GR; Rolfe BE; Campbell JH
    Arterioscler Thromb Vasc Biol; 2005 Jun; 25(6):1128-34. PubMed ID: 15705929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardiovascular tissue engineering: state of the art.
    Vara DS; Salacinski HJ; Kannan RY; Bordenave L; Hamilton G; Seifalian AM
    Pathol Biol (Paris); 2005 Dec; 53(10):599-612. PubMed ID: 16364812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrospun nanofiber scaffold for vascular tissue engineering.
    Rickel AP; Deng X; Engebretson D; Hong Z
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112373. PubMed ID: 34579892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Creation of viable pulmonary artery autografts through tissue engineering.
    Shinoka T; Shum-Tim D; Ma PX; Tanel RE; Isogai N; Langer R; Vacanti JP; Mayer JE
    J Thorac Cardiovasc Surg; 1998 Mar; 115(3):536-45; discussion 545-6. PubMed ID: 9535439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications.
    Kimicata M; Allbritton-King JD; Navarro J; Santoro M; Inoue T; Hibino N; Fisher JP
    Acta Biomater; 2020 Jul; 110():68-81. PubMed ID: 32305447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A; Markatos DN; Mitropoulou A; Panagiotopoulos I; Koletsis E; Mavrilas D
    J Mater Sci Mater Med; 2021 Mar; 32(2):21. PubMed ID: 33649939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Animal models of cardiovascular disease as test beds of bioengineered vascular grafts.
    Row S; Swartz DD; Andreadis ST
    Drug Discov Today Dis Models; 2017; 24():37-45. PubMed ID: 30505334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advancements in the bioprinting of vascular grafts.
    Fazal F; Raghav S; Callanan A; Koutsos V; Radacsi N
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34102613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of small-diameter silk vascular grafts implanted in dogs.
    Tanaka T; Tanaka R; Ogawa Y; Takagi Y; Sata M; Asakura T
    JTCVS Open; 2021 Jun; 6():148-156. PubMed ID: 36003556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of Small-Diameter Elastin-Silk Fibroin Vascular Grafts.
    Tanaka T; Abe Y; Cheng CJ; Tanaka R; Naito A; Asakura T
    Front Bioeng Biotechnol; 2020; 8():622220. PubMed ID: 33585421
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.