BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3583742)

  • 1. Use of environmental TLD data at a nuclear power station to estimate detection limits for radiation exposure due to station operation.
    Lang E; Hardeman J; Kahn B
    Health Phys; 1987 Jun; 52(6):775-85. PubMed ID: 3583742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of environmental background radiation at location of coal-fired power plants.
    Adrovic F; Prokić M; Ninković MM; Glisić R
    Radiat Prot Dosimetry; 2004; 112(3):439-42. PubMed ID: 15385680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation on the environmental radioactivity in Shanghai city during the normal operational condition of Qinshan nuclear power station.
    Lu H; Wang Q
    Radiat Prot Dosimetry; 2013 Aug; 155(4):432-8. PubMed ID: 23427205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the external exposure dose in the contaminated area near the Chernobyl nuclear power station using the thermoluminescence of quartz in bricks.
    Sato H; Takatsuji T; Takada J; Endo S; Hoshi M; Sharifov VF; Veselkina II; Pilenko IV; Kalimullin WA; Masyakin VB; Yoshikawa I; Nagatomo T; Okajima S
    Health Phys; 2002 Aug; 83(2):227-36. PubMed ID: 12132710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CaSO4:Dy and LiF:Mg, Cu, P thermoluminescent dosimeters for environmental monitoring in ambient areas of a nuclear power plant.
    Zeng XS; Zeng JX; Tan GX; Mai WJ
    Health Phys; 1996 Mar; 70(3):367-71. PubMed ID: 8609029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the critical radiation exposure pathways at a BWR nuclear power station.
    Golden JC; Chandrasekaran ES; Kahn B
    Health Phys; 1982 Jun; 42(6):777-88. PubMed ID: 7107288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermoluminescent dosimetry intercomparison in operational power station fields.
    Facey RA; Agnew DA; Hirning CR; Walsh ML
    Health Phys; 1992 Dec; 63(6):702-9. PubMed ID: 1428894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The feasibility of using 129I to reconstruct 131I deposition from the Chernobyl reactor accident.
    Straume T; Marchetti AA; Anspaugh LR; Khrouch VT; Gavrilin YuI ; Shinkarev SM; Drozdovitch VV; Ulanovsky AV; Korneev SV; Brekeshev MK; Leonov ES; Voigt G; Panchenko SV; Minenko VF
    Health Phys; 1996 Nov; 71(5):733-40. PubMed ID: 8887520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental radiation measurements using TLD-900 at the King Saud University Campus, Riyadh, Saudi Arabia.
    al-Mohawes NA; Kadachi A; Waheed A
    Health Phys; 1991 Dec; 61(6):821-4. PubMed ID: 1955326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose levels of the occupational radiation exposures in Poland based on results from the accredited dosimetry service at the IFJ PAN, Krakow.
    Budzanowski M; Kopeć R; Obryk B; Olko P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):107-10. PubMed ID: 21183549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different versions of the right answer: the importance of measurement uncertainty in radiation dosimetry.
    Gilvin P; McWhan A
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):62-6. PubMed ID: 20952420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of environmental radiation dosimetry and gamma-ray spectroscopy.
    Jackson WM; Spaulding JD; Noakes JE; Murphy GL
    Health Phys; 1985 Jun; 48(6):747-56. PubMed ID: 3997526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine.
    Handl J; Beltz D; Botsch W; Harb S; Jakob D; Michel R; Romantschuk LD
    Health Phys; 2003 Apr; 84(4):502-17. PubMed ID: 12705449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe--a review based on the EURADOS questionnaire.
    Olko P; Currivan L; van Dijk JW; Lopez MA; Wernli C
    Radiat Prot Dosimetry; 2006; 120(1-4):298-302. PubMed ID: 16581929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field test of electret ion chambers for environmental monitoring.
    Fjeld RA; Montague KJ; Haapala MH; Kotrappa P
    Health Phys; 1994 Feb; 66(2):147-54. PubMed ID: 8282554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetry in an IMRT phantom designed for a remote monitoring program.
    Han Y; Shin EH; Lim C; Kang SK; Park SH; Lah JE; Suh TS; Yoon M; Lee SB; Cho SH; Ibbott GS; Ju SG; Ahn YC
    Med Phys; 2008 Jun; 35(6):2519-27. PubMed ID: 18649485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercomparison of environmental gamma doses measured with A NaI (Tl) survey meter and thermoluminescent dosimeters (TLDs) in the Poonch division of Azad Kashmir, Pakistan.
    Rafique M; Kearfott KJ; Ahmad K; Akhter J; Khan AR; Saeed RA; Rahman SU; Matiullah ; Rajput MU
    Biomed Environ Sci; 2014 Dec; 27(12):969-72. PubMed ID: 25484014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of Teflon-embedded calcium sulphate: dysprosium thermoluminescent dosimeters for chest radiography.
    Borrás C; Liss MM; Thomason C; Hidalgo-Salvatierra O; White CP; Barton JE
    Health Phys; 1987 Dec; 53(6):631-7. PubMed ID: 3679827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of annual whole-body occupational radiation exposure in medical practice in Ghana (2000-09).
    Hasford F; Owusu-Banahene J; Amoako JK; Otoo F; Darko EO; Emi-Reynolds G; Yeboah J; Arwui CC; Adu S
    Radiat Prot Dosimetry; 2012 May; 149(4):431-7. PubMed ID: 21743072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.