These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35837650)

  • 1. Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition.
    Saffaryazdi N; Wasim ST; Dileep K; Nia AF; Nanayakkara S; Broadbent E; Billinghurst M
    Front Psychol; 2022; 13():864047. PubMed ID: 35837650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-to-end multimodal emotion recognition based on facial expressions and remote photoplethysmography signals.
    Li J; Peng J
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 39024092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition.
    Huang Y; Yang J; Liao P; Pan J
    Comput Intell Neurosci; 2017; 2017():2107451. PubMed ID: 29056963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affection of facial artifacts caused by micro-expressions on electroencephalography signals.
    Zeng X; Zhao X; Wang S; Qin J; Xie J; Zhong X; Chen J; Liu G
    Front Neurosci; 2022; 16():1048199. PubMed ID: 36507351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FusionSense: Emotion Classification Using Feature Fusion of Multimodal Data and Deep Learning in a Brain-Inspired Spiking Neural Network.
    Tan C; Ceballos G; Kasabov N; Puthanmadam Subramaniyam N
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in brain activations between micro- and macro-expressions based on electroencephalography.
    Zhao X; Liu Y; Chen T; Wang S; Chen J; Wang L; Liu G
    Front Neurosci; 2022; 16():903448. PubMed ID: 36172039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition.
    Xefteris VR; Tsanousa A; Georgakopoulou N; Diplaris S; Vrochidis S; Kompatsiaris I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multi-Column CNN Model for Emotion Recognition from EEG Signals.
    Yang H; Han J; Min K
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural Activity.
    Akter S; Prodhan RA; Pias TS; Eisenberg D; Fresneda Fernandez J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MindLink-Eumpy: An Open-Source Python Toolbox for Multimodal Emotion Recognition.
    Li R; Liang Y; Liu X; Wang B; Huang W; Cai Z; Ye Y; Qiu L; Pan J
    Front Hum Neurosci; 2021; 15():621493. PubMed ID: 33679348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels.
    Phan TD; Kim SH; Yang HJ; Lee GS
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research progress on emotion recognition by combining virtual reality environment and electroencephalogram signals].
    Yang W; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):389-397. PubMed ID: 38686422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Emotion Recognition Based on Multiple Physiological Signals].
    Chen S; Zhang L; Jiang F; Chen W; Miao J; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Apr; 44(4):283-287. PubMed ID: 32762198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM).
    Algarni M; Saeed F; Al-Hadhrami T; Ghabban F; Al-Sarem M
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-independent emotion recognition based on physiological signals: a three-stage decision method.
    Chen J; Hu B; Wang Y; Moore P; Dai Y; Feng L; Ding Z
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):167. PubMed ID: 29297324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing Attention Mechanism for EEG Signals: Emotion Recognition with Vision Transformers.
    Arjun A; Rajpoot AS; Raveendranatha Panicker M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5723-5726. PubMed ID: 34892420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.