These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35837761)

  • 1. A device-agnostic shape model for automated body composition estimates from 3D optical scans.
    Tian IY; Wong MC; Kennedy S; Kelly NN; Liu YE; Garber AK; Heymsfield SB; Curless B; Shepherd JA
    Med Phys; 2022 Oct; 49(10):6395-6409. PubMed ID: 35837761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated body composition estimation from device-agnostic 3D optical scans in pediatric populations.
    Tian IY; Wong MC; Nguyen WM; Kennedy S; McCarthy C; Kelly NN; Liu YE; Garber AK; Heymsfield SB; Curless B; Shepherd JA
    Clin Nutr; 2023 Sep; 42(9):1619-1630. PubMed ID: 37481870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed 3-dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies.
    Ng BK; Sommer MJ; Wong MC; Pagano I; Nie Y; Fan B; Kennedy S; Bourgeois B; Kelly N; Liu YE; Hwaung P; Garber AK; Chow D; Vaisse C; Curless B; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2019 Dec; 110(6):1316-1326. PubMed ID: 31553429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and Precision of 3-dimensional Optical Imaging for Body Composition by Age, BMI, and Ethnicity.
    Wong MC; Bennett JP; Quon B; Leong LT; Tian IY; Liu YE; Kelly NN; McCarthy C; Chow D; Pujades S; Garber AK; Maskarinec G; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Sep; 118(3):657-671. PubMed ID: 37474106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring body composition change for intervention studies with advancing 3D optical imaging technology in comparison to dual-energy X-ray absorptiometry.
    Wong MC; Bennett JP; Leong LT; Tian IY; Liu YE; Kelly NN; McCarthy C; Wong JMW; Ebbeling CB; Ludwig DS; Irving BA; Scott MC; Stampley J; Davis B; Johannsen N; Matthews R; Vincellette C; Garber AK; Maskarinec G; Weiss E; Rood J; Varanoske AN; Pasiakos SM; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Apr; 117(4):802-813. PubMed ID: 36796647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trunk-to-leg volume and appendicular lean mass from a commercial 3-dimensional optical body scanner for disease risk identification.
    Bennett JP; Wong MC; Liu YE; Quon BK; Kelly NN; Garber AK; Heymsfield SB; Shepherd JA
    Clin Nutr; 2024 Oct; 43(10):2430-2437. PubMed ID: 39305753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pose-independent method for accurate and precise body composition from 3D optical scans.
    Wong MC; Ng BK; Tian I; Sobhiyeh S; Pagano I; Dechenaud M; Kennedy SF; Liu YE; Kelly NN; Chow D; Garber AK; Maskarinec G; Pujades S; Black MJ; Curless B; Heymsfield SB; Shepherd JA
    Obesity (Silver Spring); 2021 Nov; 29(11):1835-1847. PubMed ID: 34549543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner.
    Bennett JP; Liu YE; Quon BK; Kelly NN; Wong MC; Kennedy SF; Chow DC; Garber AK; Weiss EJ; Heymsfield SB; Shepherd JA
    Clin Nutr; 2022 Jan; 41(1):211-218. PubMed ID: 34915272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-sectional assessment of body composition and detection of malnutrition risk in participants with low body mass index and eating disorders using 3D optical surface scans.
    Garber AK; Bennett JP; Wong MC; Tian IY; Maskarinec G; Kennedy SF; McCarthy C; Kelly NN; Liu YE; Machen VI; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2023 Oct; 118(4):812-821. PubMed ID: 37598747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children and Adolescents' Anthropometrics Body Composition from 3-D Optical Surface Scans.
    Wong MC; Ng BK; Kennedy SF; Hwaung P; Liu EY; Kelly NN; Pagano IS; Garber AK; Chow DC; Heymsfield SB; Shepherd JA
    Obesity (Silver Spring); 2019 Nov; 27(11):1738-1749. PubMed ID: 31689009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting 3D body shape and body composition from conventional 2D photography.
    Tian IY; Ng BK; Wong MC; Kennedy S; Hwaung P; Kelly N; Liu E; Garber AK; Curless B; Heymsfield SB; Shepherd JA
    Med Phys; 2020 Dec; 47(12):6232-6245. PubMed ID: 32978970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital anthropometric volumes: Toward the development and validation of a universal software.
    Sobhiyeh S; Dunkel A; Dechenaud M; Mehrnezhad A; Kennedy S; Shepherd J; Wolenski P; Heymsfield SB
    Med Phys; 2021 Jul; 48(7):3654-3664. PubMed ID: 33694162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Dimensional optical scanning for body composition assessment: A 4-component model comparison of four commercially available scanners.
    Tinsley GM; Moore ML; Benavides ML; Dellinger JR; Adamson BT
    Clin Nutr; 2020 Oct; 39(10):3160-3167. PubMed ID: 32113641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Automated Pipeline for Body Composition Estimation from 3D Optical Scans using Principal Component Analysis: A Shape Up Study.
    Sobhiyeh S; Borel N; Dechenaud M; Graham CA; Wong M; Wolenski P; Shepherd J; Heymsfield SB
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1853-1858. PubMed ID: 33018361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Convolutional Deep Learning for Nonlinear Estimation of Body Composition from Whole-Body Morphology.
    Tian I; Liu J; Wong M; Kelly N; Liu Y; Garber A; Heymsfield S; Curless B; Shepherd J
    Res Sq; 2024 Feb; ():. PubMed ID: 38410459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative deep learning furthers the understanding of local distributions of fat and muscle on body shape and health using 3D surface scans.
    Leong LT; Wong MC; Liu YE; Glaser Y; Quon BK; Kelly NN; Cataldi D; Sadowski P; Heymsfield SB; Shepherd JA
    Commun Med (Lond); 2024 Jan; 4(1):13. PubMed ID: 38287144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a rapid multicompartment body composition model using 3-dimensional optical imaging and bioelectrical impedance analysis.
    Bennett JP; Cataldi D; Liu YE; Kelly NN; Quon BK; Schoeller DA; Kelly T; Heymsfield SB; Shepherd JA
    Clin Nutr; 2024 Feb; 43(2):346-356. PubMed ID: 38142479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of body shape as a human body composition assessment in isolated conditions and remote environments.
    Wong MC; Bennett JP; Leong LT; Liu YE; Kelly NN; Cherry J; Kloza K; Li B; Iuliano S; Sibonga J; Sawyer A; Ayton J; Shepherd JA
    NPJ Microgravity; 2024 Jun; 10(1):72. PubMed ID: 38914554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical anthropometrics and body composition from 3D whole-body surface scans.
    Ng BK; Hinton BJ; Fan B; Kanaya AM; Shepherd JA
    Eur J Clin Nutr; 2016 Nov; 70(11):1265-1270. PubMed ID: 27329614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of rapid 4-component body composition assessment with the use of dual-energy X-ray absorptiometry and bioelectrical impedance analysis.
    Ng BK; Liu YE; Wang W; Kelly TL; Wilson KE; Schoeller DA; Heymsfield SB; Shepherd JA
    Am J Clin Nutr; 2018 Oct; 108(4):708-715. PubMed ID: 30099474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.