These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35837971)

  • 1. Time-resolved photoluminescence studies of perovskite chalcogenides.
    Ye K; Zhao B; Diroll BT; Ravichandran J; Jaramillo R
    Faraday Discuss; 2022 Oct; 239(0):146-159. PubMed ID: 35837971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the Charge Carrier Recombination Lifetime by Octahedral Rotations in Ruddlesden-Popper Ba
    Li Q; Huang A; Fan C; Yan L; Tretiak S; Zhou L
    J Phys Chem Lett; 2024 Jul; ():7221-7227. PubMed ID: 38975710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal BaZrS
    Ravi VK; Yu SH; Rajput PK; Nayak C; Bhattacharyya D; Chung DS; Nag A
    Nanoscale; 2021 Jan; 13(3):1616-1623. PubMed ID: 33439209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Aided Band Gap Engineering of BaZrS
    Sharma S; Ward ZD; Bhimani K; Sharma M; Quinton J; Rhone TD; Shi SF; Terrones H; Koratkar N
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18962-18972. PubMed ID: 37014669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence.
    Zhou C; Chen W; Yang S; Ou Q; Gan Z; Bao Q; Jia B; Wen X
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26384-26390. PubMed ID: 32400152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.
    Zhang X; Munir R; Xu Z; Liu Y; Tsai H; Nie W; Li J; Niu T; Smilgies DM; Kanatzidis MG; Mohite AD; Zhao K; Amassian A; Liu SF
    Adv Mater; 2018 May; 30(21):e1707166. PubMed ID: 29611240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells.
    Yan L; Ma J; Li P; Zang S; Han L; Zhang Y; Song Y
    Adv Mater; 2022 Feb; 34(7):e2106822. PubMed ID: 34676930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation.
    Zhao X; Zheng T; Zhao W; Yu Y; Wang W; Ni Z
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films.
    Biewald A; Giesbrecht N; Bein T; Docampo P; Hartschuh A; Ciesielski R
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20838-20844. PubMed ID: 31099235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices.
    Chen S; Shi G
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28256781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated Formation of 2D Ruddlesden-Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications.
    Gowdru SM; Lin JC; Wang ST; Chen YC; Wu KC; Jiang CN; Chen YD; Li SS; Chang YJ; Wang DY
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organohalide Perovskites for Solar Energy Conversion.
    Lin Q; Armin A; Burn PL; Meredith P
    Acc Chem Res; 2016 Mar; 49(3):545-53. PubMed ID: 26863507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causes and Solutions of Recombination in Perovskite Solar Cells.
    Chen J; Park NG
    Adv Mater; 2019 Nov; 31(47):e1803019. PubMed ID: 30230045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.
    Ren D; Scofield AC; Farrell AC; Rong Z; Haddad MA; Laghumavarapu RB; Liang B; Huffaker DL
    Nanoscale; 2018 Apr; 10(16):7792-7802. PubMed ID: 29663009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination.
    Xiao X; Li W; Fang Y; Liu Y; Shao Y; Yang S; Zhao J; Dai X; Zia R; Huang J
    Nat Commun; 2020 May; 11(1):2215. PubMed ID: 32371861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications.
    Yamada Y; Nakamura T; Endo M; Wakamiya A; Kanemitsu Y
    J Am Chem Soc; 2014 Aug; 136(33):11610-3. PubMed ID: 25075458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces.
    Wolff CM; Caprioglio P; Stolterfoht M; Neher D
    Adv Mater; 2019 Dec; 31(52):e1902762. PubMed ID: 31631441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths.
    Alarousu E; El-Zohry AM; Yin J; Zhumekenov AA; Yang C; Alhabshi E; Gereige I; AlSaggaf A; Malko AV; Bakr OM; Mohammed OF
    J Phys Chem Lett; 2017 Sep; 8(18):4386-4390. PubMed ID: 28849938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites.
    Adhyaksa GWP; Brittman S; Āboliņš H; Lof A; Li X; Keelor JD; Luo Y; Duevski T; Heeren RMA; Ellis SR; Fenning DP; Garnett EC
    Adv Mater; 2018 Dec; 30(52):e1804792. PubMed ID: 30368936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.