BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35838004)

  • 1. H
    Ma G; Liu Z; Zhu C; Chen H; Kwok RTK; Zhang P; Tang BZ; Cai L; Gong P
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202207213. PubMed ID: 35838004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-Detonated Biomimetic "Nanobomb" with Controlled Release of HSP90 Inhibitor to Disrupt Mitochondrial Function for Synergistic Gas and Photothermal Therapy.
    Yang G; Song T; Zhang H; Li M; Wei X; Zhou W; Wu C; Liu Y; Yang H
    Adv Healthc Mater; 2023 Oct; 12(26):e2300945. PubMed ID: 37200205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy.
    Dai Y; Sun Z; Zhao H; Qi D; Li X; Gao D; Li M; Fan Q; Shen Q; Huang W
    Biomaterials; 2021 Aug; 275():120935. PubMed ID: 34116284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-size Ti
    Liao T; Chen Z; Kuang Y; Ren Z; Yu W; Rao W; Li L; Liu Y; Xu Z; Jiang B; Li C
    Acta Biomater; 2023 Mar; 159():312-323. PubMed ID: 36708854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas-Mediated Tumor Energy Remodeling for Sensitizing Mild Photothermal Therapy.
    Cheng J; Zhu Y; Dai Y; Li L; Zhang M; Jin D; Liu M; Yu J; Yu W; Su D; Zou J; Chen X; Liu Y
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304312. PubMed ID: 37137872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hypoxia-activated photothermal agent inhibits multiple heat shock proteins for low-temperature photothermal therapy.
    Zhang X; Xue SS; Pan W; Wang K; Li N; Tang B
    Chem Commun (Camb); 2023 Mar; 59(26):3898-3901. PubMed ID: 36917473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy.
    Zhang P; Wu Q; Yang J; Hou M; Zheng B; Xu J; Chai Y; Xiong L; Zhang C
    Acta Biomater; 2022 Jul; 146():450-464. PubMed ID: 35526739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Copper-Doped Polypyrrole Nanoparticles for Enhanced Cancer Low-Temperature Photothermal Therapy.
    Chen H; Luo X; Cai W; Wang S; Xiang J; Liu Z; Zhu D
    Int J Nanomedicine; 2023; 18():7533-7541. PubMed ID: 38106449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy.
    Wang W; Zhang X; Ni X; Zhou W; Xie C; Huang W; Fan Q
    Biomater Sci; 2022 Feb; 10(3):846-853. PubMed ID: 35006217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma.
    Cai H; Dai X; Guo X; Zhang L; Cao K; Yan F; Ji B; Liu Y
    Acta Biomater; 2021 Jun; 127():276-286. PubMed ID: 33812073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy.
    Chang K; Sun X; Qi Q; Fu M; Han B; Zhang Y; Zhao W; Ni T; Li Q; Yang Z; Ge C
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of triple negative breast cancer by near infrared light triggered mild-temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals.
    Li R; Hu X; Shang F; Wu W; Zhang H; Wang Y; Pan J; Shi S; Dong C
    Acta Biomater; 2022 Aug; 148():218-229. PubMed ID: 35705171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-Mediated HSP Inhibition Strategy for Enhanced Low-Temperature Photothermal Therapy.
    Liu W; Di J; Ma Y; Wang S; Meng M; Yin Y; Xi R; Zhao X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26252-26262. PubMed ID: 37218741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy.
    Sun P; Jiang X; Sun B; Wang H; Li J; Fan Q; Huang W
    Biomaterials; 2022 Jan; 280():121319. PubMed ID: 34923313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Delivery Nanomedicines Reverse Thermal Resistance to Enhance Tumor Mild-Temperature Photothermal Therapy.
    Lai J; Shi Q; Xie Y; Zhu Y; Liang S; Chen Y; Yuan J; Liu L
    Mol Pharm; 2024 Mar; 21(3):1526-1536. PubMed ID: 38379524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide.
    Liu HJ; Wang M; Hu X; Shi S; Xu P
    Small; 2020 Sep; 16(38):e2003398. PubMed ID: 32797711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H
    Chang K; Sun X; Fu M; Han B; Jiang X; Qi Q; Zhang Y; Ni T; Ge C; Yang Z
    J Mater Chem B; 2024 Mar; 12(11):2737-2745. PubMed ID: 38379390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Platelet-Mimicking Single-Atom Nanozyme for Mitochondrial Damage-Mediated Mild-Temperature Photothermal Therapy.
    Qi P; Zhang J; Bao Z; Liao Y; Liu Z; Wang J
    ACS Appl Mater Interfaces; 2022 May; 14(17):19081-19090. PubMed ID: 35442630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascade Tumor Therapy Platform for Sensitized Chemotherapy and Penetration Enhanced Photothermal Therapy.
    Liu S; Shen C; Jiang D; Qian C; Yang Z; Wang J; Ye W
    Macromol Biosci; 2022 Mar; 22(3):e2100429. PubMed ID: 34910842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-Activatable Nanovesicles as In Situ Bombers for Combined Hydrogen-Sulfide-Mediated Respiration Inhibition and Photothermal Therapy.
    Yu Q; Tu L; Zhu T; Zhu H; Liu S; Sun Y; Zhao Q
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50637-50648. PubMed ID: 36326806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.