These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35838015)

  • 1. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Sep; 108(3-1):034113. PubMed ID: 37849140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging and confinement in subordinated fractional Brownian motion.
    Liang Y; Wang W; Metzler R
    Phys Rev E; 2024 Jun; 109(6-1):064144. PubMed ID: 39020934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging scaled Brownian motion.
    Safdari H; Chechkin AV; Jafari GR; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042107. PubMed ID: 25974439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics.
    Li Y; Suleiman K; Xu Y
    Phys Rev E; 2024 Jan; 109(1-1):014139. PubMed ID: 38366530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Particle Diffusion Characterization by Deep Learning.
    Granik N; Weiss LE; Nehme E; Levin M; Chein M; Perlson E; Roichman Y; Shechtman Y
    Biophys J; 2019 Jul; 117(2):185-192. PubMed ID: 31280841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflected fractional Brownian motion in one and higher dimensions.
    Vojta T; Halladay S; Skinner S; Janušonis S; Guggenberger T; Metzler R
    Phys Rev E; 2020 Sep; 102(3-1):032108. PubMed ID: 33075869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.