BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35838015)

  • 1. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Sep; 108(3-1):034113. PubMed ID: 37849140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging scaled Brownian motion.
    Safdari H; Chechkin AV; Jafari GR; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042107. PubMed ID: 25974439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics.
    Li Y; Suleiman K; Xu Y
    Phys Rev E; 2024 Jan; 109(1-1):014139. PubMed ID: 38366530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Particle Diffusion Characterization by Deep Learning.
    Granik N; Weiss LE; Nehme E; Levin M; Chein M; Perlson E; Roichman Y; Shechtman Y
    Biophys J; 2019 Jul; 117(2):185-192. PubMed ID: 31280841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflected fractional Brownian motion in one and higher dimensions.
    Vojta T; Halladay S; Skinner S; Janušonis S; Guggenberger T; Metzler R
    Phys Rev E; 2020 Sep; 102(3-1):032108. PubMed ID: 33075869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonergodicity of confined superdiffusive fractional Brownian motion.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Nov; 108(5):L052101. PubMed ID: 38115422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.