These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35838055)

  • 61. ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization.
    Cortés-Hernández P; Vázquez-Memije ME; García JJ
    J Biol Chem; 2007 Jan; 282(2):1051-8. PubMed ID: 17121862
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cryo-EM structures provide insight into how E. coli F
    Sobti M; Walshe JL; Wu D; Ishmukhametov R; Zeng YC; Robinson CV; Berry RM; Stewart AG
    Nat Commun; 2020 May; 11(1):2615. PubMed ID: 32457314
    [TBL] [Abstract][Full Text] [Related]  

  • 63. C-terminal regulatory domain of the ε subunit of F
    Akanuma G; Tagana T; Sawada M; Suzuki S; Shimada T; Tanaka K; Kawamura F; Kato-Yamada Y
    Microbiologyopen; 2019 Aug; 8(8):e00815. PubMed ID: 30809948
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cell surface F1/FO ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues.
    Kawai Y; Kaidoh M; Yokoyama Y; Ohhashi T
    Am J Physiol Cell Physiol; 2013 Dec; 305(11):C1139-50. PubMed ID: 24067918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The physiological role of complex V in ATP synthesis: Murzyme functioning is viable whereas rotary conformation change model is untenable.
    Manoj KM; Bazhin NM; Tamagawa H; Jaeken L; Parashar A
    J Biomol Struct Dyn; 2023 Jun; 41(9):3993-4012. PubMed ID: 35394896
    [TBL] [Abstract][Full Text] [Related]  

  • 66. INA complex liaises the F
    Naumenko N; Morgenstern M; Rucktäschel R; Warscheid B; Rehling P
    Nat Commun; 2017 Nov; 8(1):1237. PubMed ID: 29093463
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mitochondrial Inhibitory Factor Protein 1 Functions as an Endogenous Inhibitor for Coupling Factor 6.
    Kawai M; Osanai T; Tanaka M; Magota K; Tomita H; Okumura K
    J Cell Biochem; 2016 Jul; 117(7):1680-7. PubMed ID: 26659871
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular dynamics simulation of proton-transfer coupled rotations in ATP synthase F
    Kubo S; Niina T; Takada S
    Sci Rep; 2020 May; 10(1):8225. PubMed ID: 32427921
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of a highly diverged mitochondrial ATP synthase F
    Dewar CE; Oeljeklaus S; Wenger C; Warscheid B; Schneider A
    J Biol Chem; 2022 Apr; 298(4):101829. PubMed ID: 35293314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2016 Apr; 249(1-2):11-21. PubMed ID: 26621635
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mitochondrial ATP synthase β-subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity.
    Tran L; Langlais PR; Hoffman N; Roust L; Katsanos CS
    Exp Physiol; 2019 Jan; 104(1):126-135. PubMed ID: 30362197
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Both rotor and stator subunits are necessary for efficient binding of F1 to F0 in functionally assembled Escherichia coli ATP synthase.
    Krebstakies T; Zimmermann B; Gräber P; Altendorf K; Börsch M; Greie JC
    J Biol Chem; 2005 Sep; 280(39):33338-45. PubMed ID: 16085645
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular architecture of the rotary motor in ATP synthase.
    Stock D; Leslie AG; Walker JE
    Science; 1999 Nov; 286(5445):1700-5. PubMed ID: 10576729
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The rotor in the membrane of the ATP synthase and relatives.
    Arechaga I; Jones PC
    FEBS Lett; 2001 Apr; 494(1-2):1-5. PubMed ID: 11297723
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Catalyst-free Click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation.
    Cobley JN; Noble A; Jimenez-Fernandez E; Valdivia Moya MT; Guille M; Husi H
    Redox Biol; 2019 Sep; 26():101258. PubMed ID: 31234016
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cryo-EM of ATP synthases.
    Guo H; Rubinstein JL
    Curr Opin Struct Biol; 2018 Oct; 52():71-79. PubMed ID: 30240940
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase.
    Collinson IR; Runswick MJ; Buchanan SK; Fearnley IM; Skehel JM; van Raaij MJ; Griffiths DE; Walker JE
    Biochemistry; 1994 Jun; 33(25):7971-8. PubMed ID: 8011660
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Energy transduction in the F1 motor of ATP synthase.
    Wang H; Oster G
    Nature; 1998 Nov; 396(6708):279-82. PubMed ID: 9834036
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ATP synthase: motoring to the finish line.
    Senior AE
    Cell; 2007 Jul; 130(2):220-1. PubMed ID: 17662937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.