These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 35838124)
1. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction. Zheng J; Qian Y; He J; Kang Z; Deng L J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124 [TBL] [Abstract][Full Text] [Related]
2. Exploring ncRNA-Drug Sensitivity Associations via Graph Contrastive Learning. Hu X; Jiang Y; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1380-1389. PubMed ID: 38578855 [TBL] [Abstract][Full Text] [Related]
3. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning. Zhuo L; Song B; Liu Y; Li Z; Fu X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562 [TBL] [Abstract][Full Text] [Related]
4. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network. Zhang X; Zhao L; Chai Z; Wu H; Yang W; Li C; Jiang Y; Liu Q J Comput Biol; 2024 Aug; 31(8):742-756. PubMed ID: 38923911 [TBL] [Abstract][Full Text] [Related]
5. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery. Zhang Y; Li X J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272 [TBL] [Abstract][Full Text] [Related]
6. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning. Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409 [TBL] [Abstract][Full Text] [Related]
7. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions. Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237 [TBL] [Abstract][Full Text] [Related]
8. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning. Zhang L; Chen M; Hu X; Deng L Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876 [TBL] [Abstract][Full Text] [Related]
9. LRGCPND: Predicting Associations between ncRNA and Drug Resistance via Linear Residual Graph Convolution. Li Y; Wang R; Zhang S; Xu H; Deng L Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638849 [TBL] [Abstract][Full Text] [Related]
10. AntiViralDL: Computational Antiviral Drug Repurposing Using Graph Neural Network and Self-Supervised Learning. Zhang P; Hu X; Li G; Deng L IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37922162 [TBL] [Abstract][Full Text] [Related]
11. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach. Xu H; Hu X; Yan X; Zhong W; Yin D; Gai Y Comput Biol Med; 2022 Jun; 145():105447. PubMed ID: 35430557 [TBL] [Abstract][Full Text] [Related]
12. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization. Ai N; Liang Y; Yuan H; Ouyang D; Xie S; Liu X BMC Genomics; 2023 Jul; 24(1):424. PubMed ID: 37501127 [TBL] [Abstract][Full Text] [Related]
13. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction. Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884 [TBL] [Abstract][Full Text] [Related]
14. RDRGSE: A Framework for Noncoding RNA-Drug Resistance Discovery by Incorporating Graph Skeleton Extraction and Attentional Feature Fusion. Zhang P; Wang Z; Sun W; Xu J; Zhang W; Wu K; Wong L; Li L ACS Omega; 2023 Aug; 8(30):27386-27397. PubMed ID: 37546619 [TBL] [Abstract][Full Text] [Related]
15. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction. Yan J; Qu W; Li X; Wang R; Tan J Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456 [TBL] [Abstract][Full Text] [Related]
16. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction. Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738 [TBL] [Abstract][Full Text] [Related]
17. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks. Shen ZA; Luo T; Zhou YK; Yu H; Du PF Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882 [TBL] [Abstract][Full Text] [Related]
18. Similarity measures-based graph co-contrastive learning for drug-disease association prediction. Gao Z; Ma H; Zhang X; Wang Y; Wu Z Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859 [TBL] [Abstract][Full Text] [Related]
19. Self-supervised contrastive graph representation with node and graph augmentation. Duan H; Xie C; Li B; Tang P Neural Netw; 2023 Oct; 167():223-232. PubMed ID: 37660671 [TBL] [Abstract][Full Text] [Related]
20. A model for predicting ncRNA-protein interactions based on graph neural networks and community detection. Zhuo L; Chen Y; Song B; Liu Y; Su Y Methods; 2022 Nov; 207():74-80. PubMed ID: 36108992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]