BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35838329)

  • 1. Endothelial Responses to Curvature-Induced Flow Patterns in Engineered Cerebral Aneurysms.
    Mandrycky CJ; Abel AN; Levy S; Marsh LM; Chassagne F; Chivukula VK; Barczay SE; Kelly CM; Kim LJ; Aliseda A; Levitt MR; Zheng Y
    J Biomech Eng; 2023 Jan; 145(1):. PubMed ID: 35838329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
    Dolan JM; Meng H; Singh S; Paluch R; Kolega J
    Ann Biomed Eng; 2011 Jun; 39(6):1620-31. PubMed ID: 21312062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.
    Dolan JM; Meng H; Sim FJ; Kolega J
    Am J Physiol Cell Physiol; 2013 Oct; 305(8):C854-66. PubMed ID: 23885059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms.
    Kadasi LM; Dent WC; Malek AM
    J Neurosurg; 2013 Jul; 119(1):172-9. PubMed ID: 23540271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.
    Lauric A; Hippelheuser J; Safain MG; Malek AM
    J Biomech; 2014 Sep; 47(12):3018-27. PubMed ID: 25062932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic correlates of wall shear stress in a patient-specific 3D-printed cerebral aneurysm model.
    Levitt MR; Mandrycky C; Abel A; Kelly CM; Levy S; Chivukula VK; Zheng Y; Aliseda A; Kim LJ
    J Neurointerv Surg; 2019 Oct; 11(10):999-1003. PubMed ID: 30979845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between hemodynamic parameters and cerebral aneurysm initiation.
    Tanaka K; Takao H; Suzuki T; Fujimura S; Uchiyama Y; Otani K; Ishibashi T; Mamori H; Fukudome K; Yamamoto M; Murayama Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1347-1350. PubMed ID: 30440641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercorrelations of morphology with hemodynamics in intracranial aneurysms in computational fluid dynamics.
    Qiu T; Jin G; Bao W; Lu H
    Neurosciences (Riyadh); 2017 Jul; 22(3):205-212. PubMed ID: 28678215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.
    Castro MA; Putman CM; Cebral JR
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1703-9. PubMed ID: 16971618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximal stenosis may induce initiation of cerebral aneurysms by increasing wall shear stress and wall shear stress gradient.
    Kono K; Fujimoto T; Terada T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):942-50. PubMed ID: 24706583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic characterization of geometric cerebral aneurysm templates.
    Nair P; Chong BW; Indahlastari A; Lindsay J; DeJeu D; Parthasarathy V; Ryan J; Babiker H; Workman C; Gonzalez LF; Frakes D
    J Biomech; 2016 Jul; 49(11):2118-2126. PubMed ID: 26654674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo cerebral aneurysm formation associated with proximal stenosis.
    Kono K; Masuo O; Nakao N; Meng H
    Neurosurgery; 2013 Dec; 73(6):E1080-90. PubMed ID: 23839522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New method for retrospective study of hemodynamic changes before and after aneurysm formation in patients with ruptured or unruptured aneurysms.
    Le WJ; Zhu YQ; Li MH; Yan L; Tan HQ; Xiao SM; Cheng YS
    BMC Neurol; 2013 Nov; 13():166. PubMed ID: 24195732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.