These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35838865)
1. Enhancement of Escherichia coli Ribonuclease R Cytosine-Sensitive Activity by Single Amino Acid Substitution. Abula A; Yang T; Zhang Y; Li T; Ji X Mol Biotechnol; 2023 Jan; 65(1):108-115. PubMed ID: 35838865 [TBL] [Abstract][Full Text] [Related]
2. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561 [TBL] [Abstract][Full Text] [Related]
3. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Matos RG; Barbas A; Arraiano CM Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750 [TBL] [Abstract][Full Text] [Related]
4. The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity. Hossain ST; Malhotra A; Deutscher MP J Biol Chem; 2015 Jun; 290(25):15697-15706. PubMed ID: 25931119 [TBL] [Abstract][Full Text] [Related]
5. Identification of temperature-sensitive mutations and characterization of thermolabile RNase II variants. Reis FP; Bárria C; Gomez-Puertas P; Gomes CM; Arraiano CM FEBS Lett; 2019 Feb; 593(3):352-360. PubMed ID: 30536706 [TBL] [Abstract][Full Text] [Related]
6. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. Amblar M; Arraiano CM FEBS J; 2005 Jan; 272(2):363-74. PubMed ID: 15654875 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation. Abula A; Li X; Quan X; Yang T; Liu Y; Guo H; Li T; Ji X Nucleic Acids Res; 2021 May; 49(8):4738-4749. PubMed ID: 33788943 [TBL] [Abstract][Full Text] [Related]
8. The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. Vincent HA; Deutscher MP J Biol Chem; 2009 Jan; 284(1):486-494. PubMed ID: 19004832 [TBL] [Abstract][Full Text] [Related]
9. Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. Pobre V; Arraiano CM BMC Genomics; 2015 Feb; 16(1):72. PubMed ID: 25757888 [TBL] [Abstract][Full Text] [Related]
10. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN. Hossain ST; Malhotra A; Deutscher MP J Biol Chem; 2016 Apr; 291(15):7877-87. PubMed ID: 26872969 [TBL] [Abstract][Full Text] [Related]
11. The role of endonucleases in the expression of ribonuclease II in Escherichia coli. Zilhão R; Régnier P; Arraiano CM FEMS Microbiol Lett; 1995 Aug; 130(2-3):237-44. PubMed ID: 7649446 [TBL] [Abstract][Full Text] [Related]
12. Substrate recognition and catalysis by the exoribonuclease RNase R. Vincent HA; Deutscher MP J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880 [TBL] [Abstract][Full Text] [Related]
13. Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. Lalonde MS; Zuo Y; Zhang J; Gong X; Wu S; Malhotra A; Li Z RNA; 2007 Nov; 13(11):1957-68. PubMed ID: 17872508 [TBL] [Abstract][Full Text] [Related]
14. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Suzuki H; Zuo Y; Wang J; Zhang MQ; Malhotra A; Mayeda A Nucleic Acids Res; 2006 May; 34(8):e63. PubMed ID: 16682442 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732 [TBL] [Abstract][Full Text] [Related]
16. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into RNA unwinding and degradation by RNase R. Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353 [TBL] [Abstract][Full Text] [Related]
18. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN. Zaniewski R; Petkaitis E; Deutscher MP J Biol Chem; 1984 Oct; 259(19):11651-3. PubMed ID: 6207170 [TBL] [Abstract][Full Text] [Related]
19. Overexpression, purification, and properties of Escherichia coli ribonuclease II. Coburn GA; Mackie GA J Biol Chem; 1996 Jan; 271(2):1048-53. PubMed ID: 8557629 [TBL] [Abstract][Full Text] [Related]
20. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator. Mohanty BK; Kushner SR Nucleic Acids Res; 2010 Jan; 38(2):597-607. PubMed ID: 19906695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]