These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 3583916)
1. Syntheses of 23-C-alkylidene, and 23-N-containing derivatives of 5-O-mycaminosyltylonolide. Kajikawa N; Tsuchiya T; Umezawa S; Umezawa H J Antibiot (Tokyo); 1987 Apr; 40(4):476-82. PubMed ID: 3583916 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of spiramycins. I. Synthesis of the acetal derivatives of neospiramycin I. Sano H; Inoue M; Yamashita K; Okachi R; Omura S J Antibiot (Tokyo); 1983 Oct; 36(10):1336-44. PubMed ID: 6643282 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of 3-deoxy-3,4-didehydro derivatives of 5-O-mycaminosyltylonolide, 5-O-(4-deoxymycaminosyl) tylonolide, and desmycosin. Kageyama S; Tsuchiya T; Umezawa S J Antibiot (Tokyo); 1993 Aug; 46(8):1265-78. PubMed ID: 8407589 [TBL] [Abstract][Full Text] [Related]
5. N-Substituted derivatives of 23-amino-4',23-dideoxymycaminosyl tylonolide. Synthesis and antibacterial activity. Sakamoto S; Tsuchiya T; Tanaka A; Umezawa S; Hamada M; Umezawa H J Antibiot (Tokyo); 1985 Apr; 38(4):477-84. PubMed ID: 4008340 [TBL] [Abstract][Full Text] [Related]
6. Papulacandins and chaetiacandin: a stereoselective route to their basic skeleton by a palladium-mediated arylation of 4,6-O-benzylidene-3-O-tert- butyldimethylsilyl-l-tributyl-stannyl-D-glucal. Dubois E; Beau JM Carbohydr Res; 1992 Jan; 223():157-67. PubMed ID: 1596916 [TBL] [Abstract][Full Text] [Related]
7. Studies on pyrazine derivatives. XLVII. Synthesis and antibacterial activity of novel pyrazine derivatives with amidoxime moiety. Gobis K; Foks H; Kedzia A; Wierzchowska M; Kwapisz E; Zwolska Z; Augustynowicz-Kopeć E Acta Pol Pharm; 2006; 63(1):39-45. PubMed ID: 17515328 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of 7'-(3-hydroxypropyl)fortimicin A and 6'-epifortimicin A. Kanai K; Nishigaki J; Taki T; Ogawa S; Suami T Carbohydr Res; 1987 Dec; 170(1):47-55. PubMed ID: 3435904 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis and activity against drug-resistant bacteria evaluation of C-20, C-23 modified 5-O-mycaminosyltylonolide derivatives. Zhai H; Luo C; Yang P; Zhang S; Wang H; Cao Y; Yang Y; Liu H; Kong X; Arhema Frejat FO; Ren C; Shi X; Wu C Eur J Med Chem; 2022 Aug; 238():114495. PubMed ID: 35675753 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of tylosin: synthesis of amino derivatives at C-20 position of tylosin and demycarosyltylosin. Matsubara H; Inokoshi J; Nakagawa A; Tanaka H; Omura S J Antibiot (Tokyo); 1983 Dec; 36(12):1713-21. PubMed ID: 6662813 [TBL] [Abstract][Full Text] [Related]
11. Syntheses of sporaricin analogues, 2-deoxy-4-N-glycyl-6-O-(alpha-nebrosaminyl)fortamine and its 3-de-O-methyl compound. Yamaguchi T; Kyotani Y; Watanabe I; Sato S; Takahashi Y; Nagakura M; Mori T J Antibiot (Tokyo); 1979 Nov; 32(11):1137-46. PubMed ID: 528383 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationship (SAR) studies on oxazolidinone antibacterial agents. 1. Conversion of 5-substituent on oxazolidinone. Tokuyama R; Takahashi Y; Tomita Y; Suzuki T; Yoshida T; Iwasaki N; Kado N; Okezaki E; Nagata O Chem Pharm Bull (Tokyo); 2001 Apr; 49(4):347-52. PubMed ID: 11310656 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, antimicrobial evaluation and structure-activity relationships within 23-modified derivatives of 5-O-mycaminosyltylonolide. Kirst HA; Toth JE; Wind JA; Debono M; Willard KE; Molloy RM; Paschal JW; Ott JL; Felty-Duckworth AM; Counter FT J Antibiot (Tokyo); 1987 Jun; 40(6):823-42. PubMed ID: 3610835 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of spiramycins. V. Synthesis and antibacterial activity of 3'- or 4''-de-N-methylspiramycin I and their N-substituted derivatives. Sano H; Tanaka H; Yamashita K; Okachi R; Omura S J Antibiot (Tokyo); 1985 Feb; 38(2):186-96. PubMed ID: 3997666 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and antibacterial activity of a new series of 2,3,5,7-substituted-pyrido[2,3-d]pyrimidin-4(3h)-one derivatives. Bheemanapalli LN; Akkinepally RR; Pamulaparthy SR Chem Pharm Bull (Tokyo); 2008 Sep; 56(9):1342-8. PubMed ID: 18758116 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of spiramycins. II. Synthesis and antimicrobial activity of 4'-deoxy derivatives of neospiramycin I and their 12-(Z)-isomers. Sano H; Inoue M; Omura S J Antibiot (Tokyo); 1984 Jul; 37(7):738-49. PubMed ID: 6469868 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and Antibacterial Activity of Novel 4″- Zhao ZH; Zhu D; Zhang XX; Luo ZG; Lei PS J Asian Nat Prod Res; 2019 Jul; 21(7):610-618. PubMed ID: 29665718 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and antibacterial evaluation of a novel series of 10-hydroxyl ketolide derivatives. Jiang JW; Sun Y; Nie Y; Zhi HJ; Zhang XJ; Li X; Sun HP; You QD Bioorg Med Chem Lett; 2013 Jun; 23(11):3452-7. PubMed ID: 23591116 [TBL] [Abstract][Full Text] [Related]
19. Syntheses of 9-substituted josamycin, 13-substituted isojosamycin and their tetrahydro derivatives. Tanaka A; Watanabe A; Kobayashi R; Tsuchiya T; Umezawa S; Hamada M; Umezawa H J Antibiot (Tokyo); 1981 Sep; 34(9):1137-51. PubMed ID: 7328055 [TBL] [Abstract][Full Text] [Related]
20. Synthetic cephalosporins. The synthesis and antibacterial activities of 7-[2-(2-(amino-1,3,4-thiadiazol-5-yl)acetamido]-cephalosporins. Sakagami K; Mishina T; Kuroda T; Hatanaka M; Ishimaru T J Antibiot (Tokyo); 1983 Sep; 36(9):1205-10. PubMed ID: 6630079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]