BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3583925)

  • 21. Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices.
    Basta D; Ernest A
    Neurosci Lett; 2004 Sep; 368(3):297-302. PubMed ID: 15364415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: a study of evoked potentials in the rat.
    Szczepaniak WS; Møller AR
    Neurosci Lett; 1995 Aug; 196(1-2):77-80. PubMed ID: 7501262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of cortical evoked potentials to electric and acoustic stimuli.
    Lusted HS; Simmons FB
    J Acoust Soc Am; 1984 Aug; 76(2):449-55. PubMed ID: 6090518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Threshold elevation at high frequencies of the auditory nerve action potentials in acute versus chronic recordings in guinea pigs.
    Cazals Y; Aran JM; Hawkins JE
    Hear Res; 1980 Mar; 2(2):95-109. PubMed ID: 7364672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of high-intensity sound on cochlear microphonics and activity of inferior colliculus neurons in the guinea pig.
    Popelár J; Syka J; Ulehlová L
    Arch Otorhinolaryngol; 1978 Sep; 221(2):115-22. PubMed ID: 751616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Erratum to "Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices".
    Basta D; Ernst A
    Neurosci Lett; 2005 Feb; 374(1):74-9. PubMed ID: 15714695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Middle latency responses to electrical stimulation of the auditory nerve in unanaesthetized guinea pigs.
    Popelár J; Syka J
    Hear Res; 1993 May; 67(1-2):69-74. PubMed ID: 8340279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats.
    Popelar J; Grecova J; Rybalko N; Syka J
    Hear Res; 2008 Nov; 245(1-2):82-91. PubMed ID: 18812219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Onset and offset responses from inferior colliculus and auditory cortex to paired noisebursts: inner hair cell loss.
    Guo Y; Burkard R
    Hear Res; 2002 Sep; 171(1-2):158-166. PubMed ID: 12204359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats.
    Sheppard AM; Chen GD; Manohar S; Ding D; Hu BH; Sun W; Zhao J; Salvi R
    Neuroscience; 2017 Sep; 359():159-171. PubMed ID: 28711622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex.
    Popelár J; Nwabueze-Ogbo FC; Syka J
    Physiol Res; 2003; 52(5):615-28. PubMed ID: 14535838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intensity difference thresholds assessed with eighth nerve and auditory cortex potentials: compared values from cochlear and vascular responses.
    Cazals Y; Aran JM; Erre JP
    Hear Res; 1983 Jun; 10(3):263-8. PubMed ID: 6874599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig.
    Thorne PR; Nuttall AL
    Hear Res; 1987; 27(1):1-10. PubMed ID: 2953704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise.
    Winter IM; Palmer AR
    J Neurophysiol; 1995 Jan; 73(1):141-59. PubMed ID: 7714560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma.
    Salvi RJ; Saunders SS; Gratton MA; Arehole S; Powers N
    Hear Res; 1990 Dec; 50(1-2):245-57. PubMed ID: 2076976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory nerve and brain stem volume-conducted potentials evoked by pure-tone pips in the CBA/J laboratory mouse.
    Henry KR
    Audiology; 1979; 18(2):93-108. PubMed ID: 435177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.