These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3583956)

  • 1. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force.
    Russell JB
    J Anim Sci; 1987 May; 64(5):1519-25. PubMed ID: 3583956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates.
    Tung RS; Kung L
    J Dairy Sci; 1993 Apr; 76(4):1083-90. PubMed ID: 8486839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of additives on in vitro ruminal fermentation: a comparison of monensin and bacitracin, another gram-positive antibiotic.
    Russell JB; Strobel HJ
    J Anim Sci; 1988 Feb; 66(2):552-8. PubMed ID: 3372392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiation by metal ions of the efficacy of the ionophores, monensin and tetronasin, towards four species of ruminal bacteria.
    Newbold CJ; Wallace RJ; Walker-Bax ND
    FEMS Microbiol Lett; 2013 Jan; 338(2):161-7. PubMed ID: 23210858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle.
    Abrar A; Tsukahara T; Kondo M; Ban-Tokuda T; Chao W; Matsui H
    Anim Sci J; 2015 Sep; 86(9):849-54. PubMed ID: 25782058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the ionophores monensin and tetronasin on simulated development of ruminal lactic acidosis in vitro.
    Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 1988 Dec; 54(12):2981-5. PubMed ID: 3223764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of monensin and pH on the production and utilization of pyro-glutamate, a novel product of ruminal glutamine deamination.
    Russell JB; Chen GJ
    J Anim Sci; 1989 Sep; 67(9):2370-6. PubMed ID: 2599979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen.
    Yang CM; Russell JB
    Appl Environ Microbiol; 1993 Oct; 59(10):3250-4. PubMed ID: 8250552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium.
    Chen G; Russell JB
    Appl Environ Microbiol; 1990 Jul; 56(7):2186-92. PubMed ID: 1975163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of magnesium and potassium on microbial fermentation in a continuous culture fermentation system with different levels of monensin or lasalocid.
    Chirase NK; Greene LW; Schelling GT; Byers FM
    J Anim Sci; 1987 Dec; 65(6):1633-8. PubMed ID: 3443582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion.
    Callaway TR; Adams KA; Russell JB
    Curr Microbiol; 1999 Oct; 39(4):226-30. PubMed ID: 10486059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria.
    Callaway TR; Martin SA
    J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro.
    Chen GJ; Russell JB
    J Anim Sci; 1991 May; 69(5):2196-203. PubMed ID: 1829725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics.
    Russell JB; Mantovani HC
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):347-55. PubMed ID: 12125815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2658-63. PubMed ID: 2604404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed.
    Chow JM; Van Kessel JA; Russell JB
    J Anim Sci; 1994 Jun; 72(6):1630-5. PubMed ID: 8071190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
    Krause DO; Russell JB
    Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nisin and monensin on ruminal fermentations In vitro.
    Callaway TR; Carneiro De Melo AM; Russell JB
    Curr Microbiol; 1997 Aug; 35(2):90-6. PubMed ID: 9216882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.