These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35839666)

  • 1. Surface induced melting of long Al nanowires: phase field model and simulations for pressure loading and without it.
    Javanbakht M; Eskandari SS; Silani M
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35839666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size and mechanics effects in surface-induced melting of nanoparticles.
    Levitas VI; Samani K
    Nat Commun; 2011; 2():284. PubMed ID: 21505440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31758-68. PubMed ID: 26561920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain boundary-induced premelting and solid ↔ melt phase transformations: effect of interfacial widths and energies and triple junctions at the nanoscale.
    Basak A
    Phys Chem Chem Phys; 2021 Sep; 23(33):17953-17972. PubMed ID: 34382047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Phase-Field Model for In-Space Manufacturing of Binary Alloys.
    Ghosh M; Hendy M; Raush J; Momeni K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-solid phase transformation via virtual melting significantly below the melting temperature.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    Phys Rev Lett; 2004 Jun; 92(23):235702. PubMed ID: 15245170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modes of surface premelting in colloidal crystals composed of attractive particles.
    Li B; Wang F; Zhou D; Peng Y; Ni R; Han Y
    Nature; 2016 Mar; 531(7595):485-8. PubMed ID: 26976448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface melting and breakup of metal nanowires: Theory and molecular dynamics simulation.
    Ridings KM; Aldershof TS; Hendy SC
    J Chem Phys; 2019 Mar; 150(9):094705. PubMed ID: 30849918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Simulation Study of Multi-Field Coupling for Laser Cladding of Shaft Parts.
    Zhao C; Ma C; Yang J; Li M; Zhao Q; Ma H; Jia X
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of solid-liquid interface motion in molecular dynamics and phase-field models: crystallization of chromium and silicon.
    Karim ET; He M; Salhoumi A; Zhigilei LV; Galenko PK
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200320. PubMed ID: 34275355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of rapid growth and melting of Al
    Rozas RE; Ankudinov V; Galenko PK
    J Phys Condens Matter; 2022 Oct; 34(49):. PubMed ID: 36228604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study.
    Liang T; Zhou D; Wu Z; Shi P
    Nanotechnology; 2017 Dec; 28(48):485704. PubMed ID: 29019463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni-Al nanowires.
    Sutrakar VK; Mahapatra DR
    Nanotechnology; 2009 Jul; 20(29):295705. PubMed ID: 19567964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire melting modes during the solid-liquid phase transition: theory and molecular dynamics simulations.
    Ridings KM; Hendy SC
    Sci Rep; 2022 Nov; 12(1):20052. PubMed ID: 36414690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulus-pressure equation for confined fluids.
    Gor GY; Siderius DW; Shen VK; Bernstein N
    J Chem Phys; 2016 Oct; 145(16):164505. PubMed ID: 27802643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-crystal melting calculation for Al, Cu and Ag considering macro-crystal surface melting.
    Jin B; Liu S; Du Y; Kaptay G; Fu T
    Phys Chem Chem Phys; 2022 Sep; 24(36):22278-22288. PubMed ID: 36098238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive understanding of melting temperature of nanowire, nanotube and bulk counterpart.
    Ouyang G; Yang G; Zhou G
    Nanoscale; 2012 Apr; 4(8):2748-53. PubMed ID: 22422101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.
    Momeni K; Levitas VI
    Phys Chem Chem Phys; 2016 Apr; 18(17):12183-203. PubMed ID: 27078783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.