BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35839975)

  • 1. CHO cathepsin B identified as the protease responsible for a target bispecific antibody fragmentation.
    Hu L; Liu S; Xia L; Cong X; Xu C; Wang L; Li Y
    Protein Expr Purif; 2022 Nov; 199():106144. PubMed ID: 35839975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product.
    Bee JS; Tie L; Johnson D; Dimitrova MN; Jusino KC; Afdahl CD
    Biotechnol Prog; 2015; 31(5):1360-9. PubMed ID: 26259961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery and characterization of CHO host cell protease-induced fragmentation of a recombinant monoclonal antibody during production process development.
    Yang B; Li W; Zhao H; Wang A; Lei Y; Xie Q; Xiong S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Apr; 1112():1-10. PubMed ID: 30836312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium caprylate wash during Protein A chromatography as an effective means for removing protease(s) responsible for target antibody fragmentation.
    Hu L; Tang J; Zhang X; Li Y
    Protein Expr Purif; 2021 Oct; 186():105907. PubMed ID: 34022391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathepsin D: Removal strategy on protein A chromatography, near real time monitoring and characterisation during monoclonal antibody production.
    Cui T; Chi B; Heidbrink Thompson J; Kasali T; Sellick C; Turner R
    J Biotechnol; 2019 Nov; 305():51-60. PubMed ID: 31442501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsin L Causes Proteolytic Cleavage of Chinese-Hamster-Ovary Cell Expressed Proteins During Processing and Storage: Identification, Characterization, and Mitigation.
    Luo H; Tie L; Cao M; Hunter AK; Pabst TM; Du J; Field R; Li Y; Wang WK
    Biotechnol Prog; 2019 Jan; 35(1):e2732. PubMed ID: 30320962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing half antibody byproduct by Protein A chromatography during the purification of a bispecific antibody.
    Chen X; Wang Y; Li Y
    Protein Expr Purif; 2020 Aug; 172():105635. PubMed ID: 32268171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process.
    Liu X; Chen Y; Zhao Y; Liu-Compton V; Chen W; Payne G; Lazar AC
    J Pharm Biomed Anal; 2019 Sep; 174():500-508. PubMed ID: 31234041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture.
    Wang C; Vemulapalli B; Cao M; Gadre D; Wang J; Hunter A; Wang X; Liu D
    MAbs; 2018; 10(8):1226-1235. PubMed ID: 30153083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the complete characterization of host cell proteins in biotherapeutics via affinity depletions, LC-MS/MS, and multivariate analysis.
    Madsen JA; Farutin V; Carbeau T; Wudyka S; Yin Y; Smith S; Anderson J; Capila I
    MAbs; 2015; 7(6):1128-37. PubMed ID: 26291024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the relative robustness of byproduct removal by wash and by elution in column chromatography for the purification of a bispecific antibody.
    Wan Y; Zhang T; Wang Y; Li Y
    Protein Expr Purif; 2021 Jan; 177():105762. PubMed ID: 32971297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a host cell protein impurity in therapeutic protein, P1.
    Ahluwalia D; Dhillon H; Slaney T; Song H; Boux H; Mehta S; Zhang L; Valdez A; Krishnamurthy G
    J Pharm Biomed Anal; 2017 Jul; 141():32-38. PubMed ID: 28419935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line.
    Kumar R; Shah RL; Ahmad S; Rathore AS
    Electrophoresis; 2021 Mar; 42(6):735-741. PubMed ID: 33348443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the Fc fusion format to generate tag-free bi-specific diabodies.
    Asano R; Ikoma K; Kawaguchi H; Ishiyama Y; Nakanishi T; Umetsu M; Hayashi H; Katayose Y; Unno M; Kudo T; Kumagai I
    FEBS J; 2010 Jan; 277(2):477-87. PubMed ID: 20015073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LC-MS/MS (HCP-AIMS) for therapeutic protein development.
    Huang Y; Molden R; Hu M; Qiu H; Li N
    J Pharm Biomed Anal; 2021 Jun; 200():114069. PubMed ID: 33901758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach to evaluate ELISA antibody coverage of host cell proteins-combining ELISA-based immunocapture and mass spectrometry.
    Pilely K; Nielsen SB; Draborg A; Henriksen ML; Hansen SWK; Skriver L; Mørtz E; Lund RR
    Biotechnol Prog; 2020 Jul; 36(4):e2983. PubMed ID: 32087048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines.
    Hamaker NK; Min L; Lee KH
    Biotechnol Bioeng; 2022 Aug; 119(8):2221-2238. PubMed ID: 35508759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system.
    Xu Y; Lee J; Tran C; Heibeck TH; Wang WD; Yang J; Stafford RL; Steiner AR; Sato AK; Hallam TJ; Yin G
    MAbs; 2015; 7(1):231-42. PubMed ID: 25427258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of an Fc-fusion recombinant protein by host cell proteases: Identification of a CHO cathepsin D protease.
    Robert F; Bierau H; Rossi M; Agugiaro D; Soranzo T; Broly H; Mitchell-Logean C
    Biotechnol Bioeng; 2009 Dec; 104(6):1132-41. PubMed ID: 19655395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.
    Hofmann N; Galetskiy D; Rauch D; Wittmann T; Marquardt A; Griese M; Zarbock R
    PLoS One; 2016; 11(3):e0152594. PubMed ID: 27031696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.