BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35839988)

  • 1. Bio-Pd(0) diverting electron from CoQ-long chain to FDH/Hase-short chain during sulfamethoxazole degradation.
    Wang J; Liu H; Song S; Chen Y; Hu Y
    Chemosphere; 2022 Nov; 307(Pt 1):135689. PubMed ID: 35839988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDH/Hases-S-chain mediated electron redistributing in Citrobacter freundii JH@FeS during degradation of sulfamethoxazole and nitrate.
    Liu H; Liu D; Chen Y
    Water Res; 2023 Sep; 243():120431. PubMed ID: 37572458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prompting the FDH/Hases-based electron transfers during Pt(IV) reduction mediated by bio-Pd(0).
    Wang J; Lin W; Chen Y; Hu Y; Luo Q
    J Hazard Mater; 2021 Sep; 417():126090. PubMed ID: 34020357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dyad of the Y-junction- and a flavin module unites diverse redox enzymes.
    Zuchan K; Baymann F; Baffert C; Brugna M; Nitschke W
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148401. PubMed ID: 33684340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and
    Zhao C; Duan X; Liu C; Huang H; Wu M; Zhang X; Chen Y
    Environ Sci Technol; 2023 Nov; 57(46):18306-18316. PubMed ID: 37043541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH.
    Bagramyan K; Mnatsakanyan N; Poladian A; Vassilian A; Trchounian A
    FEBS Lett; 2002 Apr; 516(1-3):172-8. PubMed ID: 11959127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.
    Pi J; Jawed M; Wang J; Xu L; Yan Y
    Enzyme Microb Technol; 2016 Jan; 82():1-7. PubMed ID: 26672442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase.
    Zheng Y; Kahnt J; Kwon IH; Mackie RI; Thauer RK
    J Bacteriol; 2014 Nov; 196(22):3840-52. PubMed ID: 25157086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1.
    Xiong J; Chan D; Guo X; Chang F; Chen M; Wang Q; Song X; Wu C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5579-5591. PubMed ID: 32303818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology.
    Weerakoon DR; Borden NJ; Goodson CM; Grimes J; Olson JW
    Microb Pathog; 2009 Jul; 47(1):8-15. PubMed ID: 19397993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory physiology and energy conservation efficiency of Campylobacter jejuni.
    Hoffman PS; Goodman TG
    J Bacteriol; 1982 Apr; 150(1):319-26. PubMed ID: 6277867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological removal of sulfamethoxazole enhanced by S. oneidensis MR-1 via promoting NADH generation and electron transfer and consumption.
    Zhao C; Li Y; Li X; Huang H; Zheng G; Chen Y
    J Hazard Mater; 2022 Mar; 426():127839. PubMed ID: 34838361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
    Costa KC; Lie TJ; Xia Q; Leigh JA
    J Bacteriol; 2013 Nov; 195(22):5160-5. PubMed ID: 24039260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Worm P; Stams AJM; Cheng X; Plugge CM
    Microbiology (Reading); 2011 Jan; 157(Pt 1):280-289. PubMed ID: 20884694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of the enzymes involved in H2 and formate metabolism in Syntrophospora bryantii.
    Dong X; Stams AJ
    Antonie Van Leeuwenhoek; 1995; 67(4):345-50. PubMed ID: 7574550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate.
    Abaibou H; Giordano G; Mandrand-Berthelot MA
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2657-2664. PubMed ID: 9274019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    BerrĂ­os-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    BerrĂ­os-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism.
    Sieber JR; Le HM; McInerney MJ
    Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774.
    da Silva SM; Pacheco I; Pereira IA
    J Biol Inorg Chem; 2012 Jun; 17(5):831-8. PubMed ID: 22526566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.