These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35840061)

  • 1. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning important features from multi-view data to predict drug side effects.
    Liang X; Zhang P; Li J; Fu Y; Qu L; Chen Y; Chen Z
    J Cheminform; 2019 Dec; 11(1):79. PubMed ID: 33430979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning prediction of side effects for drugs in clinical trials.
    Galeano D; Paccanaro A
    Cell Rep Methods; 2022 Dec; 2(12):100358. PubMed ID: 36590692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph Regularized Probabilistic Matrix Factorization for Drug-Drug Interactions Prediction.
    Jain S; Chouzenoux E; Kumar K; Majumdar A
    IEEE J Biomed Health Inform; 2023 May; 27(5):2565-2574. PubMed ID: 37027562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug-drug interactions.
    Nguyen DA; Nguyen CH; Petschner P; Mamitsuka H
    Bioinformatics; 2022 Jun; 38(Suppl 1):i333-i341. PubMed ID: 35758803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity.
    Jaganathan K; Rehman MU; Tayara H; Chong KT
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A similarity-based method for prediction of drug side effects with heterogeneous information.
    Zhao X; Chen L; Lu J
    Math Biosci; 2018 Dec; 306():136-144. PubMed ID: 30296417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of molecules for drug response prediction.
    An X; Chen X; Yi D; Li H; Guan Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach.
    Chen YH; Shih YT; Chien CS; Tsai CS
    PLoS One; 2022; 17(12):e0266435. PubMed ID: 36516131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-rank representation with adaptive graph regularization.
    Wen J; Fang X; Xu Y; Tian C; Fei L
    Neural Netw; 2018 Dec; 108():83-96. PubMed ID: 30173056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning.
    Ding Y; Tang J; Guo F
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2619-2632. PubMed ID: 30507518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.