These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35840369)

  • 1. Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench.
    Suman K; Wagner NJ
    J Chem Phys; 2022 Jul; 157(2):024901. PubMed ID: 35840369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and rheological aging in model attraction-driven glasses by Rheo-SANS.
    Gordon MB; Kloxin CJ; Wagner NJ
    Soft Matter; 2021 Jan; 17(4):924-935. PubMed ID: 33245305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal conditions for solidification and thermal processing of colloidal gels.
    Fenton SM; Padmanabhan P; Ryu BK; Nguyen TTD; Zia RN; Helgeson ME
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2215922120. PubMed ID: 37307451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic structure of thermoreversible colloidal gels of adhesive spheres.
    Solomon MJ; Varadan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051402. PubMed ID: 11414901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions.
    Murphy RP; Hong K; Wagner NJ
    Langmuir; 2016 Aug; 32(33):8424-35. PubMed ID: 27466883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory in aging colloidal gels with time-varying attraction.
    Chen Y; Zhang Q; Ramakrishnan S; Leheny RL
    J Chem Phys; 2023 Jan; 158(2):024906. PubMed ID: 36641382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions.
    Eberle AP; Castañeda-Priego R; Kim JM; Wagner NJ
    Langmuir; 2012 Jan; 28(3):1866-78. PubMed ID: 22148874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoreversible gelation of aqueous mixtures of pectin and chitosan. Rheology.
    Nordby MH; Kjøniksen AL; Nyström B; Roots J
    Biomacromolecules; 2003; 4(2):337-43. PubMed ID: 12625729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of structure and dynamics of thermo-reversible nanoparticle gels-A combined XPCS and rheology study.
    Bahadur D; Zhang Q; Dufresne EM; Grybos P; Kmon P; Leheny RL; Maj P; Narayanan S; Szczygiel R; Swan JW; Sandy A; Ramakrishnan S
    J Chem Phys; 2019 Sep; 151(10):104902. PubMed ID: 31521097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural relaxation, dynamical arrest, and aging in soft-sphere liquids.
    Mendoza-Méndez P; Peredo-Ortiz R; Lázaro-Lázaro E; Chávez-Paez M; Ruiz-Estrada H; Pacheco-Vázquez F; Medina-Noyola M; Elizondo-Aguilera LF
    J Chem Phys; 2022 Dec; 157(24):244504. PubMed ID: 36586975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation and growth of thermoreversible polymer gels.
    Gomez-Solano JR; Blickle V; Bechinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012308. PubMed ID: 23410332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of aging kinetics of hectorite clay suspensions.
    Shu R; Sun W; Liu X; Tong Z
    J Colloid Interface Sci; 2015 Apr; 444():132-40. PubMed ID: 25594804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-bandwidth viscoelastic properties of aging colloidal glasses and gels.
    Jabbari-Farouji S; Atakhorrami M; Mizuno D; Eiser E; Wegdam GH; Mackintosh FC; Bonn D; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061402. PubMed ID: 19256836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels.
    Helgeson ME; Gao Y; Moran SE; Lee J; Godfrin M; Tripathi A; Bose A; Doyle PS
    Soft Matter; 2014 May; 10(17):3122-33. PubMed ID: 24695862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large amplitude oscillatory shear study of a colloidal gel near the critical state.
    Suman K; Shanbhag S; Joshi YM
    J Chem Phys; 2023 Feb; 158(5):054907. PubMed ID: 36754789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelation of xyloglucan by addition of epigallocatechin gallate as studied by rheology and differential scanning calorimetry.
    Nitta Y; Fang Y; Takemasa M; Nishinari K
    Biomacromolecules; 2004; 5(4):1206-13. PubMed ID: 15244432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitrification and gelation in sticky spheres.
    Royall CP; Williams SR; Tanaka H
    J Chem Phys; 2018 Jan; 148(4):044501. PubMed ID: 29390812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.