These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35840372)

  • 1. Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning.
    Wang F; Cheng J
    J Chem Phys; 2022 Jul; 157(2):024103. PubMed ID: 35840372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics.
    Wang F; Ma Z; Cheng J
    J Am Chem Soc; 2024 May; 146(21):14566-14575. PubMed ID: 38659097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-Efficient Active Learning for Thermodynamic Integration: Acidity Constants of BiVO
    Schienbein P; Blumberger J
    Chemphyschem; 2024 Oct; ():e202400490. PubMed ID: 39365878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients.
    Gebhardt J; Kiesel M; Riniker S; Hansen N
    J Chem Inf Model; 2020 Nov; 60(11):5319-5330. PubMed ID: 32786697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Davis Computational Spectroscopy Workflow-From Structure to Spectra.
    Cavalcante LSR; Daemen LL; Goldman N; Moulé AJ
    J Chem Inf Model; 2021 Sep; 61(9):4486-4496. PubMed ID: 34449225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics.
    Wang T; He X; Li M; Shao B; Liu TY
    Sci Data; 2023 Aug; 10(1):549. PubMed ID: 37607915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation Free Energies from Machine Learning Molecular Dynamics.
    Bonnet N; Marzari N
    J Chem Theory Comput; 2024 Jun; 20(11):4820-4823. PubMed ID: 38771939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-Classical Trajectory Calculation of Rate Constants Using an Ab Initio Trained Machine Learning Model (aML-MD) with Multifidelity Data.
    Shi Z; Lele AD; Jasper AW; Klippenstein SJ; Ju Y
    J Phys Chem A; 2024 May; 128(17):3449-3457. PubMed ID: 38642065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction potentials and acidity constants of Mn superoxide dismutase calculated by QM/MM free-energy methods.
    Heimdal J; Kaukonen M; Srnec M; Rulíšek L; Ryde U
    Chemphyschem; 2011 Dec; 12(17):3337-47. PubMed ID: 21960467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using force-based adaptive resolution simulations to calculate solvation free energies of amino acid sidechain analogues.
    Fiorentini R; Kremer K; Potestio R; Fogarty AC
    J Chem Phys; 2017 Jun; 146(24):244113. PubMed ID: 28668024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol.
    Zhu X; Iyengar SS
    J Chem Theory Comput; 2022 Sep; 18(9):5125-5144. PubMed ID: 35994592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Hybrid Method for the Calculation of the Solvation Free Energy of Small Molecules in Aqueous Solutions.
    Wu W; Kieffer J
    J Chem Theory Comput; 2019 Jan; 15(1):371-381. PubMed ID: 30500197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potentials and acidity constants from density functional theory based molecular dynamics.
    Cheng J; Liu X; VandeVondele J; Sulpizi M; Sprik M
    Acc Chem Res; 2014 Dec; 47(12):3522-9. PubMed ID: 25365148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward robust computational electrochemical predicting the environmental fate of organic pollutants.
    Sviatenko L; Isayev O; Gorb L; Hill F; Leszczynski J
    J Comput Chem; 2011 Jul; 32(10):2195-203. PubMed ID: 21541957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive, Geometric Networks for Efficient Coarse-Grained Ab Initio Molecular Dynamics with Post-Hartree-Fock Accuracy.
    Ricard TC; Haycraft C; Iyengar SS
    J Chem Theory Comput; 2018 Jun; 14(6):2852-2866. PubMed ID: 29771516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taming Rugged Free Energy Landscapes Using an Average Force.
    Fu H; Shao X; Cai W; Chipot C
    Acc Chem Res; 2019 Nov; 52(11):3254-3264. PubMed ID: 31680510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.