These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35840379)

  • 1. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning of free energies in chemical compound space using ensemble representations: Reaching experimental uncertainty for solvation.
    Weinreich J; Browning NJ; von Lilienfeld OA
    J Chem Phys; 2021 Apr; 154(13):134113. PubMed ID: 33832231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics.
    Wang T; He X; Li M; Shao B; Liu TY
    Sci Data; 2023 Aug; 10(1):549. PubMed ID: 37607915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning.
    Wang F; Cheng J
    J Chem Phys; 2022 Jul; 157(2):024103. PubMed ID: 35840372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Diffusion Monte Carlo Forces.
    Huang C; Rubenstein BM
    J Phys Chem A; 2023 Jan; 127(1):339-355. PubMed ID: 36576803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning based energy-free structure predictions of molecules, transition states, and solids.
    Lemm D; von Rudorff GF; von Lilienfeld OA
    Nat Commun; 2021 Jul; 12(1):4468. PubMed ID: 34294693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients.
    Gebhardt J; Kiesel M; Riniker S; Hansen N
    J Chem Inf Model; 2020 Nov; 60(11):5319-5330. PubMed ID: 32786697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DICE: A Monte Carlo Code for Molecular Simulation Including the Configurational Bias Monte Carlo Method.
    Cezar HM; Canuto S; Coutinho K
    J Chem Inf Model; 2020 Jul; 60(7):3472-3488. PubMed ID: 32470296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning.
    Bennett WFD; He S; Bilodeau CL; Jones D; Sun D; Kim H; Allen JE; Lightstone FC; Ingólfsson HI
    J Chem Inf Model; 2020 Nov; 60(11):5375-5381. PubMed ID: 32794768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting.
    Le HM; Huynh S; Raff LM
    J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
    Cabeza de Vaca I; Qian Y; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2018 Jun; 14(6):3279-3288. PubMed ID: 29708338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.
    Hansen K; Montavon G; Biegler F; Fazli S; Rupp M; Scheffler M; von Lilienfeld OA; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2013 Aug; 9(8):3404-19. PubMed ID: 26584096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational Properties of Metastable Polymorph Structures by Machine Learning.
    Legrain F; van Roekeghem A; Curtarolo S; Carrete J; Madsen GKH; Mingo N
    J Chem Inf Model; 2018 Dec; 58(12):2460-2466. PubMed ID: 30351054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical accuracy from density functional approximations via machine learning.
    Bogojeski M; Vogt-Maranto L; Tuckerman ME; Müller KR; Burke K
    Nat Commun; 2020 Oct; 11(1):5223. PubMed ID: 33067479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.
    Meirovitch H
    J Mol Recognit; 2010; 23(2):153-72. PubMed ID: 19650071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FCHL revisited: Faster and more accurate quantum machine learning.
    Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O
    J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.