These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35840582)

  • 1. Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream.
    Yamagami Y; Watanabe M; Mori M; Ono J
    Nat Commun; 2022 Jul; 13(1):3767. PubMed ID: 35840582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales.
    Liu Z; Risi C; Codron F; Jian Z; Wei Z; He X; Poulsen CJ; Wang Y; Chen D; Ma W; Cheng Y; Bowen GJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2120770119. PubMed ID: 36037334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications.
    Kumar A; Yadav J; Mohan R
    Sci Total Environ; 2021 Jan; 753():142046. PubMed ID: 32892004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño-Southern Oscillation.
    Luo B; Luo D; Ge Y; Dai A; Wang L; Simmonds I; Xiao C; Wu L; Yao Y
    Nat Commun; 2023 Feb; 14(1):585. PubMed ID: 36737448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline.
    Li D; Zhang R; Knutson TR
    Nat Commun; 2017 Apr; 8():14991. PubMed ID: 28401886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region.
    Deng J; Dai A
    Nat Commun; 2022 Apr; 13(1):2100. PubMed ID: 35440575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming.
    Schlichtholz P
    Sci Rep; 2019 Sep; 9(1):13692. PubMed ID: 31548604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale sea ice-Surface temperature variability linked to Atlantic meridional overturning circulation.
    Vaideanu P; Stepanek C; Dima M; Schrepfer J; Matos F; Ionita M; Lohmann G
    PLoS One; 2023; 18(8):e0290437. PubMed ID: 37647314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of Arctic sea ice to stratospheric ozone depletion.
    Zhang J; Tian W; Pyle JA; Keeble J; Abraham NL; Chipperfield MP; Xie F; Yang Q; Mu L; Ren HL; Wang L; Xu M
    Sci Bull (Beijing); 2022 Jun; 67(11):1182-1190. PubMed ID: 36545984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrocarbons and suspended matter in the atmosphere-water boundary layer in the Barents and Kara Seas.
    Nemirovskaya IA; Khramtsova AV
    Mar Pollut Bull; 2023 Jun; 191():114892. PubMed ID: 37062131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rise and fall of sea ice production in the Arctic Ocean's ice factories.
    Cornish SB; Johnson HL; Mallett RDC; Dörr J; Kostov Y; Richards AE
    Nat Commun; 2022 Dec; 13(1):7800. PubMed ID: 36528641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate impacts and Arctic precursors of changing storm track activity in the Atlantic-Eurasian region.
    Schlichtholz P
    Sci Rep; 2018 Dec; 8(1):17786. PubMed ID: 30542140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional warming over the Barents area.
    Isaksen K; Nordli Ø; Ivanov B; Køltzow MAØ; Aaboe S; Gjelten HM; Mezghani A; Eastwood S; Førland E; Benestad RE; Hanssen-Bauer I; Brækkan R; Sviashchennikov P; Demin V; Revina A; Karandasheva T
    Sci Rep; 2022 Jun; 12(1):9371. PubMed ID: 35705593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for rapid transport of contaminants from the Kara Sea.
    Pfirman SL; Kögeler JW; Rigor I
    Sci Total Environ; 1997 Aug; 202(1-3):111-22. PubMed ID: 9241881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Climate Change on Chlorophyll
    Dvoretsky VG; Vodopianova VV; Bulavina AS
    Biology (Basel); 2023 Jan; 12(1):. PubMed ID: 36671811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.
    Li X; Holland DM; Gerber EP; Yoo C
    Nature; 2014 Jan; 505(7484):538-42. PubMed ID: 24451542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does Arctic warming reduce preservation of organic matter in Barents Sea sediments?
    Faust JC; Stevenson MA; Abbott GD; Knies J; Tessin A; Mannion I; Ford A; Hilton R; Peakall J; März C
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190364. PubMed ID: 32862811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability.
    Siew PYF; Li C; Ting M; Sobolowski SP; Wu Y; Chen X
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of potential transport of pollutants into the Barents Sea via sea ice--an observational approach.
    Korsnes R; Pavlova O; Godtliebsen F
    Mar Pollut Bull; 2002 Sep; 44(9):861-9. PubMed ID: 12405210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.