These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35840619)

  • 1. Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation.
    Li J; Jamieson WD; Dimitriou P; Xu W; Rohde P; Martinac B; Baker M; Drinkwater BW; Castell OK; Barrow DA
    Nat Commun; 2022 Jul; 13(1):4125. PubMed ID: 35840619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics.
    Staufer O; Schröter M; Platzman I; Spatz JP
    Small; 2020 Jul; 16(27):e1906424. PubMed ID: 32078238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics.
    Li J; Baxani DK; Jamieson WD; Xu W; Rocha VG; Barrow DA; Castell OK
    Adv Sci (Weinh); 2020 Jan; 7(1):1901719. PubMed ID: 31921557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and Size Control of Artificial Cells for Bottom-Up Biology.
    Fanalista F; Birnie A; Maan R; Burla F; Charles K; Pawlik G; Deshpande S; Koenderink GH; Dogterom M; Dekker C
    ACS Nano; 2019 May; 13(5):5439-5450. PubMed ID: 31074603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic valves in microfluidic channels for droplet manipulation.
    Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D
    Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Enzymatic Reaction Network in Artificial Cell-Like Polymersomes.
    Seo H; Lee H
    Adv Sci (Weinh); 2024 Jun; 11(24):e2305760. PubMed ID: 38627986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field.
    Hasegawa K; Murata M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells.
    Göpfrich K; Platzman I; Spatz JP
    Trends Biotechnol; 2018 Sep; 36(9):938-951. PubMed ID: 29685820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models.
    Deng NN; Yelleswarapu M; Zheng L; Huck WT
    J Am Chem Soc; 2017 Jan; 139(2):587-590. PubMed ID: 27978623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrested Coalescence of Ionic Liquid Droplets: A Facile Strategy for Spatially Organized Multicompartment Assemblies.
    Feng K; Gao N; Li W; Dong H; Sun F; He G; Zhou K; Zhao H; Li G
    Small; 2021 Nov; 17(47):e2104385. PubMed ID: 34643335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Conditions for Protein Synthesis Inside Giant Vesicles Using Microfluidics toward Standardized Artificial Cell Production.
    Ushiyama R; Nanjo S; Tsugane M; Sato R; Matsuura T; Suzuki H
    ACS Synth Biol; 2024 Jan; 13(1):68-76. PubMed ID: 38032418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact-free measurement of surface tension on single droplet using machine learning and acoustic levitation.
    Argyri SM; Evenäs L; Bordes R
    J Colloid Interface Sci; 2023 Jun; 640():637-646. PubMed ID: 36889061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells.
    Hindley JW; Zheleva DG; Elani Y; Charalambous K; Barter LMC; Booth PJ; Bevan CL; Law RV; Ces O
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16711-16716. PubMed ID: 31371493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells.
    Dimitriou P; Li J; Tornillo G; McCloy T; Barrow D
    Glob Chall; 2021 Jul; 5(7):2000123. PubMed ID: 34267927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics for the study of artificial cells.
    Takinoue M; Takeuchi S
    Anal Bioanal Chem; 2011 Jun; 400(6):1705-16. PubMed ID: 21523331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floating synthesis with enhanced catalytic performance via acoustic levitation processing.
    Zheng Y; Zhuang Q; Ruan Y; Zhu G; Xie W; Jiang Y; Li H; Wei B
    Ultrason Sonochem; 2022 Jun; 87():106051. PubMed ID: 35660276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable Droplet Microfluidics Based on Machine Learning and Acoustic Manipulation.
    Yiannacou K; Sharma V; Sariola V
    Langmuir; 2022 Sep; 38(38):11557-11564. PubMed ID: 36099548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly.
    Shi Q; Di W; Dong D; Yap LW; Li L; Zang D; Cheng W
    ACS Nano; 2019 May; 13(5):5243-5250. PubMed ID: 30969755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.