These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35840619)

  • 21. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
    Abe Y; Hyuga D; Yamada S; Aoki K
    Ann N Y Acad Sci; 2006 Sep; 1077():49-62. PubMed ID: 17124114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustophoretic contactless transport and handling of matter in air.
    Foresti D; Nabavi M; Klingauf M; Ferrari A; Poulikakos D
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12549-54. PubMed ID: 23858454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies.
    Sato Y; Takinoue M
    Micromachines (Basel); 2019 Mar; 10(4):. PubMed ID: 30934758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells.
    Shetty SC; Yandrapalli N; Pinkwart K; Krafft D; Vidakovic-Koch T; Ivanov I; Robinson T
    ACS Nano; 2021 Oct; 15(10):15656-15666. PubMed ID: 34570489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of levitated objects in acoustic vortex fields.
    Hong ZY; Yin JF; Zhai W; Yan N; Wang WL; Zhang J; Drinkwater BW
    Sci Rep; 2017 Aug; 7(1):7093. PubMed ID: 28769063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.
    Ai Y; Xie R; Xiong J; Liang Q
    Small; 2020 Mar; 16(9):e1903940. PubMed ID: 31603270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Reconfiguration of Subcompartment Architectures in Artificial Cells.
    Zubaite G; Hindley JW; Ces O; Elani Y
    ACS Nano; 2022 Jun; 16(6):9389-9400. PubMed ID: 35695383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks.
    Maffeis V; Heuberger L; Nikoletić A; Schoenenberger CA; Palivan CG
    Adv Sci (Weinh); 2024 Feb; 11(8):e2305837. PubMed ID: 37984885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier.
    Palivan CG; Heuberger L; Gaitzsch J; Voit B; Appelhans D; Borges Fernandes B; Battaglia G; Du J; Abdelmohsen L; van Hest JCM; Hu J; Liu S; Zhong Z; Sun H; Mutschler A; Lecommandoux S
    Biomacromolecules; 2024 Sep; 25(9):5454-5467. PubMed ID: 39196319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes.
    Paleos CM; Pantos A
    Acc Chem Res; 2014 May; 47(5):1475-82. PubMed ID: 24735049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesizing Living Tissues with Microfluidics.
    Zheng W; Jiang X
    Acc Chem Res; 2018 Dec; 51(12):3166-3173. PubMed ID: 30456942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Containerless Bioorganic Reactions in a Floating Droplet by Levitation Technique Using an Ultrasonic Wave.
    Matsubara T; Takemura K
    Adv Sci (Weinh); 2021 Feb; 8(3):2002780. PubMed ID: 33552862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autonomous model protocell division driven by molecular replication.
    Taylor JW; Eghtesadi SA; Points LJ; Liu T; Cronin L
    Nat Commun; 2017 Aug; 8(1):237. PubMed ID: 28798300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CO
    Argyri SM; Almeida M; Cousin F; Evenäs L; Fameau AL; Le Coeur C; Bordes R
    J Colloid Interface Sci; 2025 Jan; 678(Pt C):1181-1191. PubMed ID: 39342863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmed assembly of bespoke prototissues on a microfluidic platform.
    Ramsay K; Levy J; Gobbo P; Elvira KS
    Lab Chip; 2021 Nov; 21(23):4574-4585. PubMed ID: 34723291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers.
    Najem JS; Dunlap MD; Yasmann A; Freeman EC; Grant JW; Sukharev S; Leo DJ
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.