These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 35840640)
1. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Mohammadi B; Safari MJS; Vazifehkhah S Sci Rep; 2022 Jul; 12(1):12096. PubMed ID: 35840640 [TBL] [Abstract][Full Text] [Related]
2. Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models. Sezen C; Šraj M Sci Total Environ; 2024 May; 926():171684. PubMed ID: 38508277 [TBL] [Abstract][Full Text] [Related]
3. Enhancing physically-based hydrological modeling with an ensemble of machine-learning reservoir operation modules under heavy human regulation using easily accessible data. Tu T; Li Y; Duan K; Zhao T J Environ Manage; 2024 May; 359():121044. PubMed ID: 38714035 [TBL] [Abstract][Full Text] [Related]
4. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India. Reddy NM; Saravanan S; Paneerselvam B Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058 [TBL] [Abstract][Full Text] [Related]
5. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand. Hlaing PT; Humphries UW; Waqas M MethodsX; 2024 Dec; 13():102792. PubMed ID: 39022181 [TBL] [Abstract][Full Text] [Related]
6. Assessment of hybrid machine learning algorithms using TRMM rainfall data for daily inflow forecasting in Três Marias Reservoir, eastern Brazil. Gomaa E; Zerouali B; Difi S; El-Nagdy KA; Santos CAG; Abda Z; Ghoneim SSM; Bailek N; Silva RMD; Rajput J; Ali E Heliyon; 2023 Aug; 9(8):e18819. PubMed ID: 37593632 [TBL] [Abstract][Full Text] [Related]
7. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP. Huang F; Zhang X Environ Sci Pollut Res Int; 2024 Apr; 31(16):23896-23908. PubMed ID: 38430443 [TBL] [Abstract][Full Text] [Related]
8. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895 [TBL] [Abstract][Full Text] [Related]
9. Simulating the hydrological regime of the snow fed and glaciarised Gilgit Basin in the Upper Indus using global precipitation products and a data parsimonious precipitation-runoff model. Nazeer A; Maskey S; Skaugen T; McClain ME Sci Total Environ; 2022 Jan; 802():149872. PubMed ID: 34461480 [TBL] [Abstract][Full Text] [Related]
10. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Abunama T; Othman F; Ansari M; El-Shafie A Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225 [TBL] [Abstract][Full Text] [Related]
11. Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia. Lukas P; Melesse AM; Kenea TT J Environ Manage; 2024 May; 359():121018. PubMed ID: 38714033 [TBL] [Abstract][Full Text] [Related]
12. Predicting flood stages in watersheds with different scales using hourly rainfall dataset: A high-volume rainfall features empowered machine learning approach. Qiao L; Livsey D; Wise J; Kadavy K; Hunt S; Wagner K Sci Total Environ; 2024 Nov; 950():175231. PubMed ID: 39098417 [TBL] [Abstract][Full Text] [Related]
13. Interpretable machine learning guided by physical mechanisms reveals drivers of runoff under dynamic land use changes. Wang S; Liu Y; Wang W; Zhao G; Liang H J Environ Manage; 2024 Sep; 367():121978. PubMed ID: 39067339 [TBL] [Abstract][Full Text] [Related]
14. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future. Cai M; Yang S; Zhao C; Zhou Q; Hou L PLoS One; 2017; 12(5):e0176813. PubMed ID: 28486483 [TBL] [Abstract][Full Text] [Related]
15. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794 [TBL] [Abstract][Full Text] [Related]
16. Rainfall prediction using multiple inclusive models and large climate indices. Mohamadi S; Sheikh Khozani Z; Ehteram M; Ahmed AN; El-Shafie A Environ Sci Pollut Res Int; 2022 Dec; 29(56):85312-85349. PubMed ID: 35790639 [TBL] [Abstract][Full Text] [Related]
17. Machine learning approach for the estimation of missing precipitation data: a case study of South Korea. Han H; Kim B; Kim K; Kim D; Kim HS Water Sci Technol; 2023 Aug; 88(3):556-571. PubMed ID: 37578874 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligent systems optimized by metaheuristic algorithms and teleconnection indices for rainfall modeling: The case of a humid region in the mediterranean basin. Zerouali B; Santos CAG; de Farias CAS; Muniz RS; Difi S; Abda Z; Chettih M; Heddam S; Anwar SA; Elbeltagi A Heliyon; 2023 Apr; 9(4):e15355. PubMed ID: 37128305 [TBL] [Abstract][Full Text] [Related]
19. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process. Komasi M; Sharghi S Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649 [TBL] [Abstract][Full Text] [Related]
20. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro. Versini PA; Gires A; Tchinguirinskaia I; Schertzer D Water Sci Technol; 2016 Oct; 74(8):1845-1854. PubMed ID: 27789885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]